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Background on large language models



Office/Department/Division Name

Language Model

• Definition: a probability distribution 𝑃 over sequences of words 
𝑤1, 𝑤2, … , 𝑤𝑇.

• Different assumptions on decomposing this joint probability produce 
different types of language models.

Bag of words model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 =ෑ

𝑖=1

𝑇

𝑝(𝑤𝑖)

N-gram model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 =ෑ

𝑖=1

𝑇

𝑝(𝑤𝑖|𝑤𝑖−1, 𝑤𝑖−2, … , 𝑤𝑖−𝑁)

Hidden Markov model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 = ෍

ℎ0,ℎ1,…,ℎ𝑇∈𝐻

𝑝(ℎ0)ෑ

𝑖=1

𝑇

𝑝 𝑤𝑖 ℎ𝑖 𝑝(ℎ𝑖|ℎ𝑖−1)

Classic 
language 
models:
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Language Model

Bag of words model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 =ෑ

𝑖=1

𝑇

𝑝(𝑤𝑖)

N-gram model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 =ෑ

𝑖=1

𝑇

𝑝(𝑤𝑖|𝑤𝑖−𝑁, 𝑤𝑖−𝑁+1, … , 𝑤𝑖−1)

Hidden Markov model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 = ෍

ℎ0,ℎ1,…,ℎ𝑇∈𝐻

𝑝(ℎ0)ෑ

𝑖=1

𝑇

𝑝 𝑤𝑖 ℎ𝑖 𝑝(ℎ𝑖|ℎ𝑖−1)

Classic 
language 
models:

Word embedding model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇
2𝑐 =ෑ

𝑖=1

𝑇

ෑ

−𝑐≤𝑗≤𝑐,𝑗≠0

𝑝(𝑤𝑖+𝑗|𝑤𝑖)

Counting

Dynamic programming with 
fixed transition matrix

Generative language model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 =ෑ

𝑖=1

𝑇

𝑝(𝑤𝑖|𝑤1, 𝑤2, … , 𝑤𝑖−1)

Neural 
language 
models: RNN, LSTM, Transformer (w/. decoder)

Effectively an embedding layer followed by 
one-layer fully-connected neural network 
with softmax activation

Masked language model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 =ෑ

𝑖=1

𝑇

𝑝(𝑤𝑖|𝑤1, … , 𝑤𝑖−1, 𝑤𝑖+1, … , 𝑤𝑇)

Transformer (w/. encoder)
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Beyond probability estimation

• While language models are trained to estimate the previous text sequence distribution, 
the interesting part is that they are shown to be useful beyond distribution modeling.

• Word2Vec (Mikolov et al., 2013): a non-contextual word embedding model, using a 
simple fully-connect neural network. 

• Serves as a significantly better feature for many NLP tasks. Achieves State-of-the-art (SOTA) 
performance (at that time) on many NLP tasks.

• It appears that the analogy between words can be expressed as simple arithmetic in the 
Word2Vec embedding space. E.g. King – Man = Queen - Woman

• BERT (Devlin et al., 2018): a pre-trained masked language model, using an encoder-
only Transformer architecture.

• Serves as a good initialization for many downstream NLP tasks.

• SOTA performance (at that time) on many NLP tasks can be achieved by fine-tuning BERT on 
corresponding training sets.

• GPT3 (Brown et al., 2020): a pre-trained generative language model, using a decoder-
only Transformer architecture.

• Serves as a general NLP task solver itself.

• SOTA or close to SOTA performance (at that time) on many NLP tasks can be achieved by few-shot, 
even zero-shot prompting at inference time without any parameter updating.

Large lan
gu

age m
o

d
el

https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2005.14165
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Fine-tuning
• Use the pre-trained large language model as 

a good starting point for learning downstream 

NLP tasks.

• Expensive to train when the model is large.

• Training data required (not necessarily a large 

amount).

• Parameter efficient fine-tuning: only tune a 

small number of parameters in the model and 

fix other parameters.

• Soft prompt tuning (Lester et al., 2021): add a few 
trainable new tokens at the beginning of each 
sequence for a specific task and fix all other 
parameters.

• Head tuning (Peters etal., 2018): learning a 
classifier on top of the frozen pre-trained model.

• Usually match the performance of full fine-tuning 
with significantly less computation.

https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/1802.05365
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In-context learning

• Only works well for large enough generative language models (e.g. 175B 
GPT3).

• Most common way to interact with pre-trained large language models 
nowadays.

• Can be combined with chain-of-thoughts prompting (Wei et al., 2022).

(Brown et al., 2020) (Wei et al., 2020)

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2201.11903
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Exponential scaling law

• Experiments performed using GPT-like models: decoder-only Transformer, generative 

language modeling objective. (Kaplan et al., 2020)

• The language model performance is measured by cross-entropy loss over a test set.

https://arxiv.org/abs/2001.08361
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Existing large language models

• Real-world exponential parameter growth of large language models (source).

20232018

https://lifearchitect.ai/models/
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Emergent abilities

• Definition: An ability is emergent if it is 

not present in smaller models but is 

present in larger models. (Wei et al., 

2022)

• The performance is near-random until 

a certain critical threshold of scale is 

reached, after which performance 

increases to substantially above 

random.

• Examples:

• Few-shot prompting (in-context learning) 

for arithmetic, truthful QA, etc.

• Chain of thought prompting for solving 

math word problems.

• Instruction following with instruction fine-

tuning.

https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2206.07682
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Recent works on understanding large 
language models
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How to understand these phenomena?
• Large language models (LLMs) are black-box deep neural networks that are hard 

to know their mechanism inside.

• The best-performing LLMs are either not open source (e.g. PaLM) or only their APIs 

are released (e.g. GPT3).

• Fine-tuning: detailed later.

• Prompting/in-context learning: detailed later.

• Exponential scaling law:

• A general empirical law for deep neural networks (Hestness, et al., 2017; 

Rosenfeld et al., 2020). 

• Theoretically, the power-law generalization error rate is well-known for 

linear/kernel models (Caponnetto and De Vito, 2007).

• There are some theoretical works towards this direction, though usually for fully-

connect neural networks (Schmidt-Hieber, 2020; Suzuki, 2018). 

• Emergent abilities: no good explanations.

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html
https://openai.com/
https://arxiv.org/abs/1712.00409
https://arxiv.org/abs/1909.12673
https://link.springer.com/article/10.1007/s10208-006-0196-8
https://arxiv.org/abs/1708.06633
https://arxiv.org/abs/1810.08033
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Understanding fine-tuning

• Natural task: the distribution of the next word, conditional on the context, can 

provide a strong discriminative signal for the downstream task (Saunshi et al., 2021).

• Assumption: downstream labels are recoverable via a linear head applied to 

the conditional token probabilities. 

• Experiments: use data from a simple task. E.g. linear regression.

• Hidden Markov Model data distribution: the first hidden state contains all the 

required information to recover downstream task labels.

• Why Do Pretrained Language Models Help in DownstreamTasks? An Analysis of 

Head and Prompt Tuning. Wei et al. NeurIPS 2021.

• Experiments: use data generated from a fixed distribution.

https://arxiv.org/abs/2010.03648
https://arxiv.org/abs/2106.09226
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Understanding in-context learning

• Examine pre-training data distribution:

• Hidden Markov Model

• An Explanation of In-context Learning as Implicit Bayesian Inference by Xie, 

et al. Appears in ICLR, 2022.

• Unique distributional properties of language (Chan et al., 2022)

• long tail, the dynamic meaning of words, etc

• Experiments: use data generated from a fixed distribution.

• Mechanism of utilizing the few-shot demonstrations:

• Mimic gradient descent at inference time (von Oswald et al. 2022)

• Smaller models are encoded in activation (Akyurek et al. 2022)

• Transformer itself is a learning algorithm (Li et al., 2023)

• Experiments: use data from a simple task. E.g. linear regression.

https://arxiv.org/abs/2111.02080
https://arxiv.org/abs/2111.02080
https://arxiv.org/abs/2205.05055
https://arxiv.org/abs/2212.07677
https://arxiv.org/abs/2211.15661
https://arxiv.org/abs/2301.07067
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Hidden Markov Model data distribution

• Let word tokens 𝑤𝑖 ∈ 𝑉, where 𝑉 is the vocabulary.

• Let hidden states ℎ𝑖 ∈ 𝐻. 

• The transition probabilities 𝑝 ℎ𝑖 ℎ𝑖−1 and the emission probabilities 𝑝 𝑤𝑖 ℎ𝑖 are time-

invariant.

• The joint probability of token sequence 𝑤1:𝑇 and latent states ℎ0:𝑇 can be written as: 

𝑝 𝑤1:𝑇 , ℎ0:𝑇 = 𝑝(ℎ0)ς𝑖=1
𝑇 𝑝 𝑤𝑖 ℎ𝑖 𝑝(ℎ𝑖|ℎ𝑖−1)

ℎ𝑡ℎ1 ℎ𝑡+1 ℎ𝑇…… ……

𝑤1 𝑤𝑡 𝑤𝑡+1 𝑤𝑇

𝑝(ℎ0)

Assuming pre-training data distribution 𝑝 :
(Wei et al., 2021; Xie et al., 2022)

ℎ0

https://arxiv.org/abs/2106.09226
https://arxiv.org/abs/2111.02080
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Head tuning and prompt tuning

• Consider a BERT-like masked language model 𝑀.

• Let the first token 𝑤1 be the special token [CLS]. Let 𝑥 = 𝑤2:𝑇 denote the input text 

sequence and 𝑦 denote the discrete output label. 𝐹∗ 𝑥 = 𝑦.

• Head tuning means learning a linear classifier on top of the output of the first [CLS] 

token, 𝑝(𝑤1|𝑤2:𝑇).

• Want: head tuning can learn the ground truth classifier 𝐹∗.

• Assumptions: (Wei et al., 2021)

• The language model 𝑀 perfectly learns the text distribution 𝑝(𝑤𝑖|𝑤1, … ,𝑤𝑖−1, 𝑤𝑖+1, … , 𝑤𝑇).

• ℎ0 has all the meaningful information for the downstream task.

• i.e. Ground truth mapping 𝑦 = 𝐹∗(𝑥) is assumed to be a linear classifier on the posterior 𝑝(ℎ0|𝑥).

• The Markov chain ℎ0:𝑇 is ergodic, and 𝑝 ℎ0 > 0 for all ℎ0 ∈ 𝐻.

• The token emission probability matrix 𝑃(𝑊𝑖|𝐻𝑖) has linearly independent columns. i.e. |𝐻| ≤ |𝑉|.

https://arxiv.org/abs/2106.09226
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Head tuning and prompt tuning

• Since 𝑝 𝑤1 𝑤2:𝑇 = σℎ1∈𝐻 𝑝 𝑤1 ℎ1 𝑝(ℎ1|𝑤2:𝑇) can be written in a matrix form 

𝑃 𝑊1 𝑊2:𝑇 = 𝑃 𝑊1 𝐻1 𝑃 𝐻1 𝑊2:𝑇 . Since 𝑃(𝑊𝑖|𝐻𝑖) is invertible, 𝑃 𝐻1 𝑊2:𝑇 can be 

written as a linear transformation of 𝑃 𝑊1 𝑊2:𝑇 . 

• Since the first [CLS] token itself does not have semantic meaning, 𝑃 𝐻1 𝑊2:𝑇 can 

be expressed as a linear function of 𝑃 𝐻0 𝑊1:𝑇 . Thus, the ground truth classifier 𝐹∗ 𝑥

can be expressed as a linear classifier on 𝑝 𝑤1 𝑤2:𝑇 .

• If we also use soft prompt tuning, i.e. prepend a trainable new token to the text 

sequence, then the last assumption on the invertible token emission probability 

matrix can be relaxed. i.e. the total number of hidden states can be larger than 

the vocabulary size, which increase the modeling capacity of the HMM.
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Head tuning and prompt tuning

• More realistic scenario with long-term dependency can be modeled with memory 

augmented HMMs.

• With relaxed assumptions, the ground truth classifier 𝐹∗ 𝑥 can be expressed as an 

attention over the whole output sequence.

HMM
Memory-augmented HMM 

with a single memory cell

Memory-augmented HMM 

with multiple memory cells
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Head tuning and prompt tuning

• Experiments on synthetic data using a BERT-like language model.
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In-context learning

• Consider a GPT-like generative language model 𝑀.

• Let 𝜃 ∈ Θ denote a latent concept variable. 

• Assumptions:

• The language model 𝑀 perfectly learns the text distribution 𝑝(𝑤𝑖|𝑤1, … , 𝑤𝑖−1).
• 𝜃 determines the transition probability.

• The probability of token sequence 𝑤1, 𝑤2, … , 𝑤𝑇 can be written as:

• 𝑝 𝑤1:𝑇 = 𝜃∈Θ𝑝׬ 𝑤1:𝑇|𝜃 𝑝 𝜃 𝑑𝜃

𝜃

ℎ𝑡ℎ1 ℎ𝑡+1 ℎ𝑇…… ……

𝑤1 𝑤𝑡 𝑤𝑡+1 𝑤𝑇

Assuming pre-training data distribution 𝑝 :

(Xie et al., 2022)

𝑝(ℎ0)
ℎ0

https://arxiv.org/abs/2111.02080
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In-context learning

• All examples from the same task share the same latent concept variable 𝜃∗.

• Let 𝑥 = 𝑤1:𝑇−1 denote the input text sequence and 𝑦 = 𝑤𝑇 denote the discrete 

output label.

• Only the distribution of ℎ0 changes to 𝑝𝑝𝑟𝑜𝑚𝑝𝑡, all the transition probabilities 

𝑝 ℎ𝑖 ℎ𝑖−1 and the emission probabilities 𝑝 𝑤𝑖 ℎ𝑖 remains the same as pre-training 
distribution. 

𝜃∗

ℎ𝑡ℎ1 ℎ𝑡+1 ℎ𝑇…… ……

𝑤1 𝑤𝑡 𝑤𝑡+1 𝑤𝑇

𝑥 𝑦

Downstream task data distribution 
𝑝𝑝𝑟𝑜𝑚𝑝𝑡 :

(Xie et al., 2022)

𝑝𝑝𝑟𝑜𝑚𝑝𝑡(ℎ0)
ℎ0

https://arxiv.org/abs/2111.02080
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In-context learning

• Let 𝑤𝑑𝑒𝑙𝑖𝑚 be a special delimiter token (e.g. white space or new line) to separate 

few-shot demonstrations in the in-context learning prompt.

• Let (𝑥𝑡𝑒𝑠𝑡, 𝑦𝑡𝑒𝑠𝑡) be a test example.

• K-shot in-context learning prompt: 𝑥1, 𝑦1, 𝑤
𝑑𝑒𝑙𝑖𝑚, 𝑥2, 𝑦2, 𝑤

𝑑𝑒𝑙𝑖𝑚, … , 𝑥𝑘 , 𝑦𝑘 , 𝑤
𝑑𝑒𝑙𝑖𝑚, 𝑥𝑡𝑒𝑠𝑡

• Note that the above prompt distribution is very different from the pre-training 

distribution.

• Denote the k demonstrations by 𝑆𝑘 = 𝑥1, 𝑦1, 𝑤
𝑑𝑒𝑙𝑖𝑚, 𝑥2, 𝑦2, 𝑤

𝑑𝑒𝑙𝑖𝑚, … , 𝑥𝑘 , 𝑦𝑘 , 𝑤
𝑑𝑒𝑙𝑖𝑚

• Want: the in-context learning predictor 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝑉 𝑝(𝑦|𝑆𝑘 , 𝑥𝑡𝑒𝑠𝑡) approaches to the 

Bayes optimal predictor 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝑉 𝑝𝑝𝑟𝑜𝑚𝑝𝑡(𝑦|𝑥𝑡𝑒𝑠𝑡) as the number of in-context 

learning demonstrations grows.
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In-context learning

• To show the previous statement, we need to assume:

• In the pre-training data distribution, the delimiter token 𝑤𝑑𝑒𝑙𝑖𝑚 corresponds to a 

fixed set of hidden state values 𝐷 ⊂ 𝐻.

• The delimiter token 𝑤𝑑𝑒𝑙𝑖𝑚 is almost equally likely (with bounded probability) to 

appear anywhere in a token sequence.

• The prompt distribution of the first hidden state 𝑝𝑝𝑟𝑜𝑚𝑝𝑡(ℎ) is close to the pre-

training data distribution of the first hidden state 𝑝(ℎ|ℎ𝑑𝑒𝑙𝑖𝑚, 𝜃∗). In this case, the 

delimiter token acts as a restart token under the pre-training data distribution.

• 𝑝 𝑆𝑘 , 𝑥𝑡𝑒𝑠𝑡 𝜃
∗ > 0
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In-context learning

• We can expand the in-context learning predictor as follows:

• Then we can prove that an LLM implicitly selects the correct latent concept 

variable value (omit the technical details here):

• This implies the intended conclusion:
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In-context learning

• Experiments on synthetic data using a GPT-like language model.

• Vocabulary size = 150. Length of a train example = k. Length of a test example 

uniformly sample in [2,k].

Transformer LSTM



Office/Department/Division Name

Future directions and current progress
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Comments and future directions

• Most works on understanding LLMs are not intended to open the black box. 
Instead, they try to get around the internal mechanism of LLMs by assuming they 
can perfectly estimate the pre-training distribution.

• In reality, LLMs systematically underestimate the rare word sequences (LeBrun, 
2022). While human language distribution is heavy-tailed in nature, this means a 
large portion of possible word sequences is underestimated. A similar idea has 
been used to detect machine-generated text (Mitchell et al., 2023).

• There is a gap between the theoretical/empirical results derived with synthetic 
data, and the real-world LLM behavior. E.g. Language distribution is not HMM, we 
cannot have infinite demonstrations in a prompt, etc. There is no guarantee the 
derived results can be generalized to the real-world scenario. 

• There are also contradicting conclusions in the current literature. e.g. Xie et al. 
(2022) show that LSTM can do in-context learning while Chan et al. (2022) show 
only Transformer can do in-context learning. Min et al. (2022) show that ground 
truth labels do not matter for demonstrations while Yoo et al. (2022) show that 
ground truth labels matter.

https://arxiv.org/abs/2203.12788
https://arxiv.org/abs/2203.12788
https://arxiv.org/abs/2301.11305
https://arxiv.org/abs/2111.02080
https://arxiv.org/abs/2111.02080
https://arxiv.org/abs/2205.05055
https://arxiv.org/abs/2202.12837
https://arxiv.org/abs/2205.12685
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Current progress

• Goal: closing the gap between theory and real-world LLMs.

• Current progress: a step on verifying the previously introduced latent 

concept variable model for in-context learning using GPTs.

• Large Language Models Are Implicitly Topic Models: Explaining 

and Finding Good Demonstrations for In-Context Learning. Xinyi 

Wang, Wanrong Zhu, William Wang. Preprint 2023.

https://arxiv.org/abs/2301.11916
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LLMs are implicitly topic models

• Assumption: the generated continuation is independent of the 

prompt given the concept variable θ.

LLM: Topic model:

Our assumption:

Generated continuation Prompt LLMs implicitly infer a latent 
concept variable θ from the 
prompt

LLMs generate the continuation 
exclusively based on the 
inferred concept variable θ

Language model probability output by an LLM
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In-context learning

Large Language 
Model
(LLM)

(X1, Y1)

(X2, Y2)

(Xk, Yk)

…

Demonstrations
(X, ?)

Y

Test example

Why LLMs can do in-context learning:
● Pretraining distribution? HMM (Xie et al., 2022)? 

Long tailed? Burstiness (Chan et al. 2022)?
● Mimicking gradient descent? (von Oswald et al. 

2022)
● Smaller models encoded in activation? (Akyurek 

et al. 2022)

In-context learning is highly unstable:
● How do we choose the demonstrations if 

we have a set of annotated data? 
Similarity? (Liu et al. 2022; Su et al. 2022) 
Entropy of predicted labels? (Lu et al. 2022)

• How can we understand in-context learning in a real-world setting?
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Data generation direction matters

X

Y θ

e.g. sentiment analysis, topic classification, 
emotion classification tasks

Text input

Label 
(discrete)

Latent concept 
variable

X

Y θ

e.g. linguistic analysis, hate speech detection

Text input

Label 
(discrete)

Latent concept 
variable

• Assumption: the data for each task is generated by a specific value 

of θ. i.e. a different value of θ indicates a different task.

Bayes optimal classifier Bayes optimal classifier
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Causal v.s. anti-causal

sentiment analysis linguistic analysis

Topic classification

Emotion classification Hate speech detection

• 4-shot in-context learning accuracy with GPT2-large.
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Analysis in-context learning classifier

• We want to make the above in-context learning classifier                                                  

as close to the Bayes optimal classifier as possible, which means we need to 

make                                                 as concentrated on the θ value 

corresponding to task d as possible.

• We can use the above conclusion to first learn a delegate of the true latent 

concept variable, and then use the delegate to choose the best 

demonstrations from a set of annotated data.

Latent concept variable learning 
(soft prompt tuning)

Demonstration selection
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Algorithm overview
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Latent Concept Learning

• Add a few new concept 
tokens to the original 
vocabulary of the LLM. 

• Train the embedding of 
these concept tokens 
while freezing all other 
parameters, such that the 
LLM can predict the label 
Y given X and the 
concept tokens as 
prefixes.

• Use GPT2-large in 
practice.

LLM

… …

θ X

Cross entropy loss
log𝑃𝑀(Y|θ,X)

compute

Update 
embeddings

…

Y

Dataset
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Demonstration Selection

• Compute the LM 
probability of predicting 
the concept tokens 
given an example (X, Y). 

• Then choose the top-k 
examples producing 
the highest probabilities 
as the demonstrations 
for in-context learning.

• Use GPT2-large in 
practice.

LLM

… …

X Y

Language model 
probability
𝑃𝑀(θ|X,Y)

compute

Select (X,Y) pairs

…

θ

Dataset
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In-context Learning

• Test the performance of 
the chosen k 
demonstrations by using 
them for in-context 
learning on a separate 
test set. 

• Different LLMs from the 
previous stages can be 
used.

• Use different sizes GPTs 
in practice.

LLM

… …

Test Y

Test X

infer
… … … …

…

(X1,Y1), (X2,Y2), …, (Xk,Yk)
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Main results

● Results are averaged over 8 text classification datasets, each experiment is repeated by 5 

runs.

● We select the optimal demonstrations by GPT2-large, and use the same set of 

demonstrations for all other LLMs.
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A TSNE plot of the learned concept tokens

• SST2: movie review sentiment 

analysis

• FPB: financial news sentiment 

analysis

• COLA: grammar error 
detection

• DBpedia: topic classification

• ETHOS-SO and ETHOS-R: hate 

speech detection

• EmoC and EmoS: emotion 
classification
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Conclusions

● Real-world LLMs implicitly infer a latent concept variable 
during in-context learning time.

● When have a set of annotated data, we can first learn a 
delegate of the concept variable and then select the 
demonstrations that can best represent/infer the concept 
variable.

● The selected demonstrations can be transferred across 
different-size LLMs pre-trained on similar text distributions. 
This indicates such behavior of LLMs comes from the pre-
training data distribution.
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Thank you!
Questions?
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