

UC **SANTA BARBARA**

Do Larger Language Models Imply Better Generalization? A Pretraining Scaling Law for Implicit Reasoning

Xinyi Wang, Shawn Tan, Mingyu Jin, William Yang Wang, Rameswar Panda, Yikang Shen

Scaling Laws for text generation

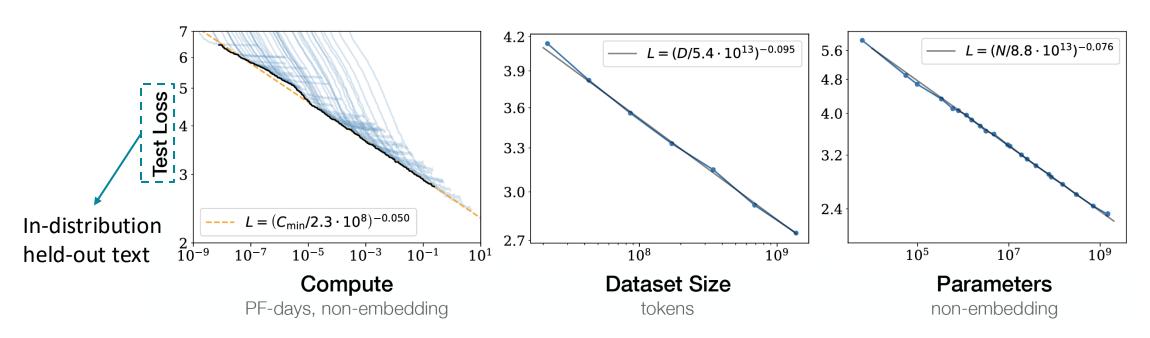


Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset size, and amount of compute² used for training. For optimal performance all three factors must be scaled up in tandem. Empirical performance has a power-law relationship with each individual factor when not bottlenecked by the other two.

(Source: Kaplan et al. 2020)

Reasoning with LLMs

Chain-of-thought prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

(Source: Wei et al. 2022)

Zero-shot chain-of-thought prompting

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

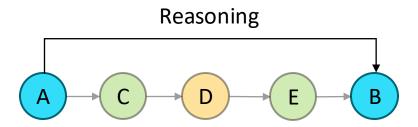
A: Let's think step by step.

(Output) There are 16 balls in total. Half of the balls are golf balls. That means that there are 8 golf balls. Half of the golf balls are blue. That means that there are 4 blue golf balls.

(Source: Kojima et al. 2022)

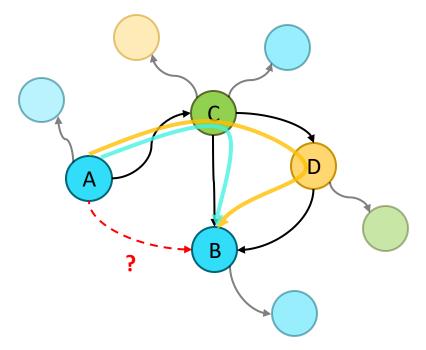
Formalize reasoning

 How can we connect concept A with concept B, if we have never seen them together before?



Abstract Reasoning as Graph Completion

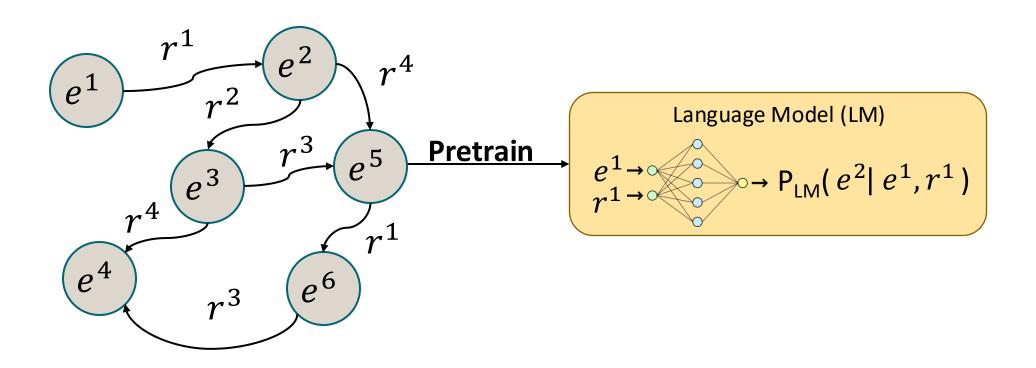
Suppose we have a large set of connected concepts...



G: World knowledge, knowledge graph...

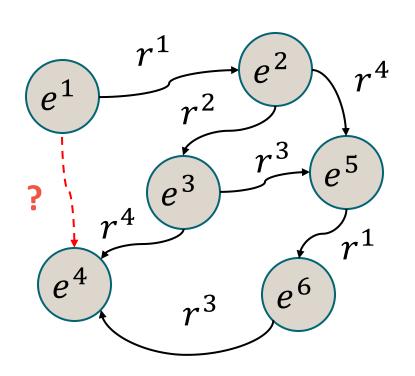
Language model pretraining

 If we pretrain a language model on a knowledge graph with next-token prediction loss, we can get a prediction of the missing edge...

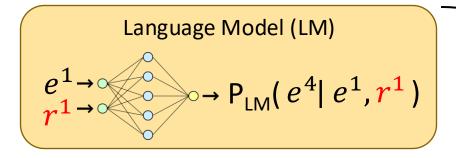


Language model inference

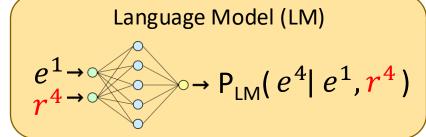
 If we pretrain a language model on a knowledge graph with next-token prediction loss, we can get a prediction of the missing edge...



Inference



•••



Select the relation with the largest probability

Reasoning on real world KGs

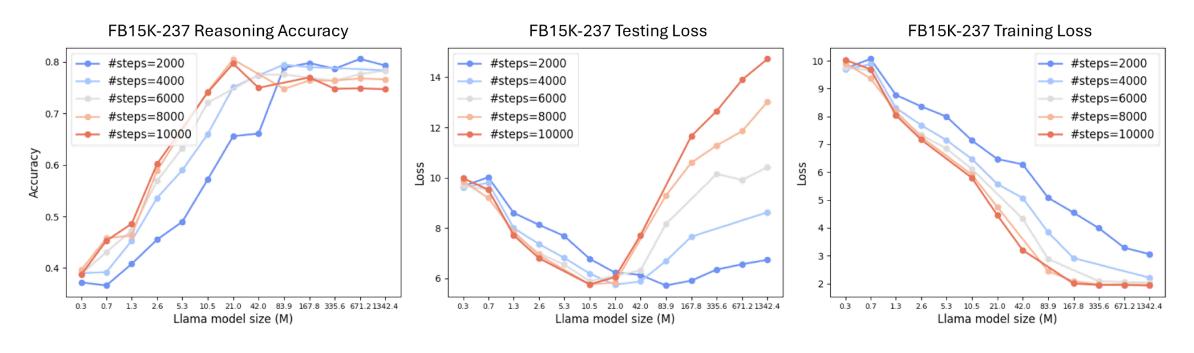


Figure 1: The multiple-choice accuracy/loss on unseen triples of different-sized language models trained on a real-wor that the testing accuracy **U-shaped instead of power law!**h 10k steps) shows curves of language models trained with universe of steps. The right panel shows the training loss decreases steadily. Note that the model size on x-axis is in log scale.

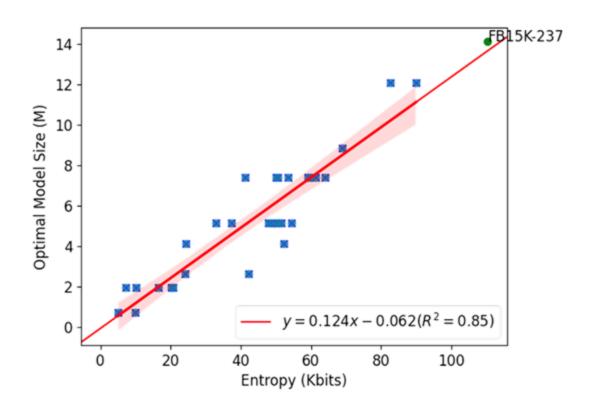
^{*} FB15K-237 has around 15k entities, 237 relations, which results in 310k triples.

Synthetic KG for Controlled Experiments

Key steps:

- Conjunctive rules generation:
 - A is B's father ^ B is C's father -> A is C's grandfather
- Control possible number of relation types connecting to each entity (real-world alignment & reduce noises)
- Grow the graph with preferential attachment to ensure power law degree distribution (real-world alignment)

Optimal Model Size v.s. Graph Search Entropy



Optimal model size linearly related with graph entropy

real-world FB15K-237 experiment (green dot) to verify the accuracy of the obtained linear scaling law.

Graph Search Entropy

 Def: #nodes * entropy rate of an infinitely long random walk on G

$$H(G) = N_e(\log(\lambda) + H^r(G)).$$

Entity entropy rate:

log dominant eigenvalue of the adjacency matrix

Relation entropy rate:

relation transition entropy w.r.t. the stationary distribution

Thank you!

Q & A