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Scaling Laws for text generation

In-distribution 
held-out text

(Source: Kaplan et al. 2020)

https://arxiv.org/abs/2001.08361


Office/Department/Division Name

Reasoning with LLMs

(Source: Kojima et al. 2022)

(Source: Wei et al. 2022)

Chain-of-thought prompting Zero-shot chain-of-thought prompting

https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2201.11903
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Formalize reasoning

• How can we connect concept A with concept B, if we 
have never seen them together before?

Xinyi Wang, Alfonso Amayuelas, Kexun Zhang, Liangming Pan, Wenhu Chen, William Yang Wang. Understanding 
Reasoning Ability of Language Models From the Perspective of Reasoning Paths Aggregation. ICML 2024.
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Abstract Reasoning as Graph Completion
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G: World knowledge, knowledge graph…

• Suppose we have a large set of connected concepts…

?
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Language model pretraining

• If we pretrain a language model on a knowledge graph with 
next-token prediction loss, we can get a prediction of the 
missing edge…
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Language model inference

• If we pretrain a language model on a knowledge graph with 
next-token prediction loss, we can get a prediction of the 
missing edge…

Inference

Language Model (LM)
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… …
Select the relation 
with the largest 
probability
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Reasoning on real world KGs

U-shaped instead of power law!

* FB15K-237 has around 15k entities, 237 relations, which results in 310k triples.
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Synthetic KG for Controlled Experiments

Key steps:

• Conjunctive rules generation: 
• A is B’s father ^ B is C’s father ->   A is C’s grandfather

• Control possible number of relation types connecting to 
each entity (real-world alignment & reduce noises)

• Grow the graph with preferential attachment to ensure 
power law degree distribution (real-world alignment)
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Optimal Model Size v.s. Graph Search Entropy

Optimal model size linearly related with graph entropy
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Graph Search Entropy

• Def: #nodes * entropy rate of an infinitely long random 
walk on G

Entity entropy rate: 

log dominant eigenvalue 
of the adjacency matrix

Relation entropy rate: 

relation transition entropy w.r.t. 
the stationary distribution
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Thank you!
Q & A
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