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Many Capabilities of Large Language Models

Where do they come from and how do they work?

2
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Understanding LLMs

LLM
Reliability?

Robustness?

Truthfulness?

Safety?

Scaling hits a wall?

LLM: Large Language Model

3
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Issues with Black Box LLMs

(Anthropic, 2024)

4

(Anil, 2024)
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Understanding LLMs

LLM
Reliability?

Robustness?

Truthfulness?

Safety?

Scaling hits a wall?

LLM
Trustworthiness New possibilities

Explainable 
decision process

Transparency

5
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Language Models

• Definition: a probability distribution 𝑃 over sequences of word tokens 
𝑤1, 𝑤2, … , 𝑤𝑇.

color of skythe is

Vocabulary

6

The
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Language Models

• Definition: a probability distribution 𝑃 over sequences of word tokens 
𝑤1, 𝑤2, … , 𝑤𝑇.

color of skythe is

PLM(blue|The color of the sky is)

7

The
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Auto-regressive Language Models

The color of skythe is

color of skythe is

Blue
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Large Language Models

Pretraining corpus

…………. The color of the sky is blue………The color of the 
sky is blue………….The color of the sky is blue………..

Language Model

Train

9

𝐿 𝜃 = ෍

𝑑∈𝐷

෍

𝑤𝑖∈𝑑

− log 𝑃𝜃(𝑤𝑖|𝑤1, 𝑤2, … , 𝑤𝑖−1)
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Large Language Models

Pretraining corpus

…………. The color of the sky is blue………The color of the 
sky is blue………….The color of the sky is blue………..

Language Model

Train

10

Understand LLMs by modeling the pretraining data distribution
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Understand LLM Generalization
11

Are LLMs only learning the surface form of pretraining data 
frequency?

How LLMs Generalize under different scenarios?

Hypothesis: Learn the data generation process instead of 
the marginal distribution.
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Outline

Generalize from Text Frequency

LLM

Are LLMs only learning the surface form 
of pretraining data distribution?

12

Generalize from Demonstrations
How few-shot generalization is enabled 

through pretraining?

Generalize from Existing Knowledge
How LLMs discover novel conclusions as a 

distribution estimator?
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Outline

Generalize from Text Frequency

LLM

13

Generalize from Existing Knowledge

Generalize from Demonstrations
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Zero-shot generalization
14
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LLM distribution v.s. Data Distribution

PLM(blue|The color of the sky is) PData(blue|The color of the sky is)

Pretraining corpus

…………. The color of the sky is blue………The color of the 
sky is blue………….The color of the sky is blue………..

Language Model

Last layer 
output

Frequency

15

?
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Distributional Memorization

PLM(blue|The color of the sky is) PData(blue|The color of the sky is)

Memorize without understanding

16
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Rare Prefix

PLM(?|The color of the sky is the same as the)

PData(ocean|The color of the sky is the same as the)

17
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Can LLMs Generalize?

PLM(?|The color of the sky is the same as the)

PData(blue|The color of the sky is) PData(blue|The color of the ocean is)

18
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Can LLMs Generalize?

PLM(ocean|The color of the sky is the same as the)

PData(blue|The color of the sky is) PData(blue|The color of the ocean is)

19
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Can LLMs Generalize?

PLM(ocean|The color of the sky is the same as the)

PData(blue|The color of the sky is) PData(blue|The color of the ocean is)

20



Office/Department/Division Name

Rare Prefix

PLM(ocean|The color of the sky is the same as the)

PData(ocean|The color of the sky is the same as the)

21
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Experiment Setting

The PILE

Xinyi Wang*, Antonis Antoniades*, Yanai Elazar, Alfonso Amayuelas, Alon Albalak, Kexun Zhang, William Yang Wang. Generalization v.s. 
Memorization: Tracing Language Models' Capabilities Back to Pretraining Data. ICLR 2025.

(207 billion tokens)

Pythia

Train

22
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Example Task

Xinyi Wang*, Antonis Antoniades*, Yanai Elazar, Alfonso Amayuelas, Alon Albalak, Kexun Zhang, William Yang Wang. Generalization v.s. 
Memorization: Tracing Language Models' Capabilities Back to Pretraining Data. ICLR 2025.

Translate German to English:
Morgen fliege ich nach Kanada zur Konferenz

23
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LLM v.s. Data Distribution

Xinyi Wang*, Antonis Antoniades*, Yanai Elazar, Alfonso Amayuelas, Alon Albalak, Kexun Zhang, William Yang Wang. Generalization v.s. 
Memorization: Tracing Language Models' Capabilities Back to Pretraining Data. ICLR 2025.

𝑃𝐷𝑎𝑡𝑎(Tomorrow I will fly to the conference in Canada|Morgen fliege ... Konferenz)

𝑃𝐿𝑀(Tomorrow I will fly to the conference in Canada|Morgen fliege ... Konferenz)

?

24
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Pretraining Data Probability

Xinyi Wang*, Antonis Antoniades*, Yanai Elazar, Alfonso Amayuelas, Alon Albalak, Kexun Zhang, William Yang Wang. Generalization v.s. 
Memorization: Tracing Language Models' Capabilities Back to Pretraining Data. ICLR 2025.

25

𝑃𝐷𝑎𝑡𝑎(Tomorrow I will fly to the conference in Canada|Morgen fliege ... Konferenz)

Directly search the whole sentence?

No match! Need simplification
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Simplification

Xinyi Wang*, Antonis Antoniades*, Yanai Elazar, Alfonso Amayuelas, Alon Albalak, Kexun Zhang, William Yang Wang. Generalization v.s. 
Memorization: Tracing Language Models' Capabilities Back to Pretraining Data. ICLR 2025.

26

Cosine similarity between 
n-gram embeddings
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Pretraining Data Probability

𝑃𝑑𝑎𝑡𝑎 Tomorrow|Morgen =
𝐶(Tomorrow, Morgen)

𝐶(Morgen)

Xinyi Wang*, Antonis Antoniades*, Yanai Elazar, Alfonso Amayuelas, Alon Albalak, Kexun Zhang, William Yang Wang. Generalization v.s. 
Memorization: Tracing Language Models' Capabilities Back to Pretraining Data. ICLR 2025.

27

Search

…. Morgen 
….……….. 
Tomorrow 
……………..

………………
…. Morgen 
….……….. 
……………

𝐶(Tomorrow, Morgen) 𝐶(Morgen)
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Comparing Distributions

𝑃𝑑𝑎𝑡𝑎 Tomorrow|Morgen =
𝐶(Tomorrow, Morgen)

𝐶(Morgen)

𝑃𝐿𝑀 Tomorrow|Morgen
= 𝑃𝜃(Tomorrow|Morgen fliege ... Konferenz)

Xinyi Wang*, Antonis Antoniades*, Yanai Elazar, Alfonso Amayuelas, Alon Albalak, Kexun Zhang, William Yang Wang. Generalization v.s. 
Memorization: Tracing Language Models' Capabilities Back to Pretraining Data. ICLR 2025.

Morgen fliege … Konferenz

Tomorrow

28
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Comparing Distributions

𝑃𝑑𝑎𝑡𝑎 Tomorrow|Morgen =
𝐶(Tomorrow, Morgen)

𝐶(Morgen)

𝑃𝐿𝑀 Tomorrow|Morgen
= 𝑃𝜃(Tomorrow|Morgen fliege ... Konferenz)

Xinyi Wang*, Antonis Antoniades*, Yanai Elazar, Alfonso Amayuelas, Alon Albalak, Kexun Zhang, William Yang Wang. Generalization v.s. 
Memorization: Tracing Language Models' Capabilities Back to Pretraining Data. ICLR 2025.

Morgen fliege … Konferenz

Tomorrow

KL divergence?
(huge n-gram vocabulary)

29
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Distributional Memorization

𝑃𝑑𝑎𝑡𝑎 Tomorrow|Morgen =
𝐶(Tomorrow, Morgen)

𝐶(Morgen)

𝑃𝐿𝑀 Tomorrow|Morgen
= 𝑃𝜃(Tomorrow|Morgen fliege ... Konferenz)

Xinyi Wang*, Antonis Antoniades*, Yanai Elazar, Alfonso Amayuelas, Alon Albalak, Kexun Zhang, William Yang Wang. Generalization v.s. 
Memorization: Tracing Language Models' Capabilities Back to Pretraining Data. ICLR 2025.

Morgen fliege … Konferenz

Tomorrow

Memorization: Spearman correlation

30
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Task Classification

TriviaQA: Commonsense Question 
Answering

WMT: Translation
MMLU: World knowledge understanding

GSM8K: Math reasoning

Xinyi Wang*, Antonis Antoniades*, Yanai Elazar, Alfonso Amayuelas, Alon Albalak, Kexun Zhang, William Yang Wang. Generalization v.s. 
Memorization: Tracing Language Models' Capabilities Back to Pretraining Data. ICLR 2025.

31

Knowledge intensive tasks Reasoning intensive tasks

Common in pretraining data Rare in pretraining data
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Task Classification

TriviaQA: Commonsense Question 
Answering

WMT: Translation
MMLU: World knowledge understanding

GSM8K: Math reasoning

Xinyi Wang*, Antonis Antoniades*, Yanai Elazar, Alfonso Amayuelas, Alon Albalak, Kexun Zhang, William Yang Wang. Generalization v.s. 
Memorization: Tracing Language Models' Capabilities Back to Pretraining Data. ICLR 2025.

32

Knowledge intensive tasks Reasoning intensive tasks

Common in pretraining data Rare in pretraining data



Office/Department/Division Name

Example Testing Data
33

TriviaQA MMLU

Question: Which was the first 
European country to abolish capital 
punishment?
Answer: Norway

Question: When a diver points a flashlight 
upward toward the surface of the water at an 
angle 20° from the normal, the beam of light
A. Totally internally reflects
B. passes into the air above
C. is absorbed
D. None of these
Answer: B
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Task Performance
34

TriviaQA MMLU

n-gram Frequency↑ Performance↑

Model size↑ Performance↑
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Distributional Memorization
35

TriviaQA MMLU

Model size↑ Correlation↑ Model size↑ Correlation↓
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Memorization v.s. Performance
36

TriviaQA MMLU

Model size↑ Correlation↑ Model size↑ Correlation↓

Model size↑ Performance↑ Model size↑ Performance↑

Depend on 
memorization

Depend on 
generalization
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Rewrite the Prompt

Xinyi Wang*, Antonis Antoniades*, Yanai Elazar, Alfonso Amayuelas, Alon Albalak, Kexun Zhang, William Yang Wang. Generalization v.s. 
Memorization: Tracing Language Models' Capabilities Back to Pretraining Data. ICLR 2025.

n-gram overlap between 
prompt and pretraining corpus 

Pretraining 
corpusPrompt

Pretraining 
corpus Prompt

Knowledge intensive tasks Reasoning intensive tasks

increase decrease

37



Office/Department/Division Name

Practical Implication

Xinyi Wang*, Antonis Antoniades*, Yanai Elazar, Alfonso Amayuelas, Alon Albalak, Kexun Zhang, William Yang Wang. Generalization v.s. 
Memorization: Tracing Language Models' Capabilities Back to Pretraining Data. ICLR 2025.

More complex 
generalization 
mechanism!

38
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Takeaways

• LLMs learn beyond surface form text frequency.

• LLMs memorize to perform knowledge intensive tasks while 
generalize to perform reasoning intensive tasks.

Xinyi Wang*, Antonis Antoniades*, Yanai Elazar, Alfonso Amayuelas, Alon Albalak, Kexun Zhang, William Yang Wang. Generalization v.s. 
Memorization: Tracing Language Models' Capabilities Back to Pretraining Data. ICLR 2025.

39
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How LLMs Generalize

Learn the surface form of text frequency

Learn the text data generation process √

X

40
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Outline

Generalize from Text Frequency

LLM

41

Generalize from Existing Knowledge

Generalize from Demonstrations
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In-Context Learning
42
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Possible Explanation

In-context learning

Test time Train time

θ1 θ2 θ3

(Brown et. al. 2020)

θ

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, William Yang Wang. Large Language Models are Latent Variable Models: Explaining and 
Finding Good Demonstrations for In-Context Learning. NeurIPS 2023.

Digits addition

=

Word spelling correction

=

Translation

=

En to Fr phrase 
translation

=

43
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𝑃𝐿𝑀 𝑤𝑡+1:𝑇 𝑤1:𝑡 = න 𝑃𝐿𝑀 𝑤𝑡+1:𝑇 𝜃 𝑃𝐿𝑀(𝜃|𝑤1:𝑡) ⅆ𝜃

LLMs as Latent Variable Models

1. Implicitly infer a latent variable θ 
from the prompt

2. Generate the continuation exclusively 
based on the inferred θ

𝑤1, 𝑤2, … , 𝑤𝑡

𝑤𝑡+1, … , 𝑤𝑇

44
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Bayes Optimal Classifier Assumption

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, William Yang Wang. Large Language Models are Latent Variable Models: Explaining and 
Finding Good Demonstrations for In-Context Learning. NeurIPS 2023.

𝑃 𝑌 𝜃, 𝑋  is Bayes optimal

θ X

Y

θ = Translate En to Fr

X Y

45
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Bayes Optimal Classifier Assumption

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, William Yang Wang. Large Language Models are Latent Variable Models: Explaining and 
Finding Good Demonstrations for In-Context Learning. NeurIPS 2023.

𝑃 𝑌 𝜃, 𝑋  is Bayes optimal

θ X

Y

θ = Translate En to Fr

X2 Y2

X1 Y1

X3 Y3

X

θ X3

Y3

θ X2

Y2

θ X1

Y1

46
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In-context Learning Classifier

Bayes optimal classifier

in-context learning classifier

closer

demonstration selection criteria

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, William Yang Wang. Large Language Models are Latent Variable Models: Explaining and 
Finding Good Demonstrations for In-Context Learning. NeurIPS 2023.

𝑃𝐿𝑀 𝑌 𝑋1, 𝑌1, 𝑋2, 𝑌2, … , 𝑋𝑘 , 𝑌𝑘 , 𝑋

= න 𝑃𝐿𝑀 𝑌 𝜃, 𝑋 𝑃𝐿𝑀 𝜃 𝑋1, 𝑌1, 𝑋2, 𝑌2, … , 𝑋𝑘 , 𝑌𝑘 , 𝑋) ⅆ𝜃

Can we verify this theory in a real-world scenario?

47
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A Real-World Testbed

Optimal demonstrations Improved performance

𝑋1 𝑌1

𝑋2 𝑌2

Among the firsts to formally propose 
the task of demonstration selection

Candidate examples

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, William Yang Wang. Large Language Models are Latent Variable Models: Explaining and 
Finding Good Demonstrations for In-Context Learning. NeurIPS 2023.

𝑋1, 𝑌1, 𝑋2, 𝑌2, X

𝑌

48
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Our Proposed Method

Latent Intent 
Learning

Score Computation
Demonstration 

Selection

49

𝑃𝐿𝑀 𝑌 𝑋1, 𝑌1, 𝑋2, 𝑌2, … , 𝑋𝑘 , 𝑌𝑘 , 𝑋

= න 𝑃𝐿𝑀 𝑌 𝜃, 𝑋 𝑃𝐿𝑀 𝜃 𝑋1, 𝑌1, 𝑋2, 𝑌2, … , 𝑋𝑘 , 𝑌𝑘 , 𝑋) ⅆ𝜃
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Latent Intent Learning

LLM

… …

θ X

…

Y

50

New tokens
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Latent Intent Learning

LLM

… …

θ X

Cross entropy loss
log 𝑃𝑀(Y|θ,X)

Update 
embeddings

…

Y

51

Other LLM parameter frozen
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Score Computation

LLM

… …

X Y

Score: Language model probability
𝑃𝑀(θ|X,Y)

…

θ

52
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Demonstration Selection

Score: Language model probability
𝑃𝑀(θ|X,Y)

Score each 
candidate

Top K: (X1,Y1), (X2,Y2), …, (Xk,Yk)

53
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Test Performance

LLM

… …

(X1,Y1), (X2,Y2), …, (Xk,Yk)

Test Y

Test X

… … … …

…

54
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Improved Performance

• Classification Tasks: 

• Stanford Sentiment Treebank (SST2)

• Corpus of Linguistic Acceptability 
(COLA)

• DBpedia ontology classification

• online hate speech detection 
(ETHOS)

• emotion prediction

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, William Yang Wang. Large Language Models are Latent Variable Models: Explaining and 
Finding Good Demonstrations for In-Context Learning. NeurIPS 2023.

• Generation Task: 

• Grade School Math 8K(GSM8K)

55
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Improved Performance

• Uniform baseline: 

• Randomly select k examples from 
candidate set

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, William Yang Wang. Large Language Models are Latent Variable Models: Explaining and 
Finding Good Demonstrations for In-Context Learning. NeurIPS 2023.

• Similar baseline: 

• Select k examples most similar to 
current testing input

56
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Improved Performance of Larger Models

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, William Yang Wang. Large Language Models are Latent Variable Models: Explaining and 
Finding Good Demonstrations for In-Context Learning. NeurIPS 2023.

57

Small Model Large Model
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Improved Performance of Larger Models

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, William Yang Wang. Large Language Models are Latent Variable Models: Explaining and 
Finding Good Demonstrations for In-Context Learning. NeurIPS 2023.

We can align large models with small model’s intent!

58
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Follow-ups

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, William Yang Wang. Large Language Models are Latent Variable Models: Explaining and 
Finding Good Demonstrations for In-Context Learning. NeurIPS 2023.

59
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Takeaways

• In-context learning can be understood as emerged 
through latent variable inference.

• Demonstrations selected by small LM can be transferred to 
improve larger LMs’ performance.

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, William Yang Wang. Large Language Models are Latent Variable Models: Explaining and 
Finding Good Demonstrations for In-Context Learning. NeurIPS 2023.

60
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Outline

Generalize from Text Frequency

LLM

61

Generalize from Existing Knowledge

Generalize from Demonstrations
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Chain-of-Thought Reasoning

Why CoT 
important?

Hypothesis: CoT verbalizes the pretraining data generation process.

62
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Data Generation Process Assumption

Random Walk

… UC Davis is in California, 
which is a state in US. …

Latent reasoning graph

Xinyi Wang, Alfonso Amayuelas, Kexun Zhang, Liangming Pan, Wenhu Chen, William Yang Wang. Understanding Reasoning Ability of Language 
Models From the Perspective of Reasoning Paths Aggregation. ICML 2024.

is in the 
state

is in the 
state

is
 a

 s
ta

te
 

in
 c

ou
nt

ry

US

UC 
Davis CA UCLA

63

Observed text corpus

Chain-of-thought paths

Analogy

Generalized Hidden Markov Model
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Novel Discovery

is in the 
state

is in the 
state

is
 a

 s
ta

te
 

in
 c

ou
nt

ry
… UC Davis is in California, 
which is a state in US. …

Latent reasoning graph

Xinyi Wang, Alfonso Amayuelas, Kexun Zhang, Liangming Pan, Wenhu Chen, William Yang Wang. Understanding Reasoning Ability of Language 
Models From the Perspective of Reasoning Paths Aggregation. ICML 2024.

US

UC 
Davis CA UCLA

?

64

Observed text corpus

Random Walk
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is in the 
state

is
 a

 s
ta

te
 

in
 c

ou
nt

ry

Path Aggregation Hypothesis

PLM( ) w1PD( ) + )]w2PD(∝ exp[

Xinyi Wang, Alfonso Amayuelas, Kexun Zhang, Liangming Pan, Wenhu Chen, William Yang Wang. Understanding Reasoning Ability of Language 
Models From the Perspective of Reasoning Paths Aggregation. ICML 2024.

… UC Davis is in California, 
which is a state in US. …

UCLA
in in in in in in

US UCLA CA US UCLA CA US
UC 

Davis

65

is in the 
state

US

UC 
Davis CA UCLA

? Random Walk
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Experiment Setup

e3 e1e4

e2

• Idea: pretrain a language model on random walk paths sampled from a 
knowledge graph from scratch.

• Each entity and relation is a token.

• Test on missing edges.

Xinyi Wang, Alfonso Amayuelas, Kexun Zhang, Liangming Pan, Wenhu Chen, William Yang Wang. Understanding Reasoning Ability of Language 
Models From the Perspective of Reasoning Paths Aggregation. ICML 2024.

𝑒3, 𝑟4, 𝑒4.  𝑒4, 𝑟3,

𝑒2

r4 r2

r3

?

66

Random Walk
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Verify Hypothesis

Random Walk

Xinyi Wang, Alfonso Amayuelas, Kexun Zhang, Liangming Pan, Wenhu Chen, William Yang Wang. Understanding Reasoning Ability of Language 
Models From the Perspective of Reasoning Paths Aggregation. ICML 2024.

67

PLM( )

w1PD( ) + )]w2PD(exp[

𝑒1 𝑒2
𝑟

𝑒1 𝑒4
𝑟2 𝑟3 𝑒2 𝑒1

𝑟2 𝑒4
𝑟1𝑒3

𝑟4 𝑒2

Language Model Distribution

Path Aggregation Hypothesis Distribution

KL divergence

Unseen triple: 
(𝑒1, 𝑟, 𝑒2) 
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Language Model Distribution Definition

Language Model

All Entities 

Xinyi Wang, Alfonso Amayuelas, Kexun Zhang, Liangming Pan, Wenhu Chen, William Yang Wang. Understanding Reasoning Ability of Language 
Models From the Perspective of Reasoning Paths Aggregation. ICML 2024.

Transformer

𝑒1

𝑟
𝑓𝜃(𝑒|𝑒1, 𝑟)

68
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Hypothesized Distribution Definition

Xinyi Wang, Alfonso Amayuelas, Kexun Zhang, Liangming Pan, Wenhu Chen, William Yang Wang. Understanding Reasoning Ability of Language 
Models From the Perspective of Reasoning Paths Aggregation. ICML 2024.

Weighted Path Aggregation

Path ranking algorithm (PRA) (Lao et. al. 2011)

Sum of Random walk 
paths probability

Pattern weight learned 
by logistic regression

Temperature

69
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Verifying Path Aggregation Hypothesis

KL Divergence Prediction Accuracy

Xinyi Wang, Alfonso Amayuelas, Kexun Zhang, Liangming Pan, Wenhu Chen, William Yang Wang. Understanding Reasoning Ability of Language 
Models From the Perspective of Reasoning Paths Aggregation. ICML 2024.

70

LM distribution is close to 
hypothesized distribution

LM learns better path weights 
by utilizing context
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Practical Implication
71

Random walk paths play an essential role in LLM reasoning

Can we augment random walk paths into real world CoT paths?

Would training on this augmented data improve real world reasoning performance?
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CoT Graph

• Organize real-world CoT paths into a graph by clustering steps.

Xinyi Wang, Alfonso Amayuelas, Kexun Zhang, Liangming Pan, Wenhu Chen, William Yang Wang. Understanding Reasoning Ability of Language 
Models From the Perspective of Reasoning Paths Aggregation. ICML 2024.

Size/weight

What is the weight of 
a gallon of seawater?

What is the average 
weight of a six year old?

Comparison

Is ten times #2 
more than #1?

Subject area

Which science field do 
astronomers study?

Which field of science do 
horoscopes fall under?

Is #1 the same 
as #2?

72
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Random Walk Augmentation

• Reorganize CoT steps by random walk over the graph.

Xinyi Wang, Alfonso Amayuelas, Kexun Zhang, Liangming Pan, Wenhu Chen, William Yang Wang. Understanding Reasoning Ability of Language 
Models From the Perspective of Reasoning Paths Aggregation. ICML 2024.

What is the area of 
study of Biochemistry?

What is the area of study 
of a geographer?

Comparison

Is any of #1 in 
#2?

Subject area

Which science field do 
astronomers study?

Which field of science do 
horoscopes fall under?

Is #1 the same 
as #2?

73
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Random Walk Augmentation

• Reorganize CoT steps by random walk over the graph.

Xinyi Wang, Alfonso Amayuelas, Kexun Zhang, Liangming Pan, Wenhu Chen, William Yang Wang. Understanding Reasoning Ability of Language 
Models From the Perspective of Reasoning Paths Aggregation. ICML 2024.

What is the area of 
study of Biochemistry?

What is the area of study 
of a geographer?

Comparison

Is any of #1 in 
#2?

Subject area

Which science field do 
astronomers study?

Which field of science do 
horoscopes fall under?

Is #1 the same 
as #2?
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Improved Performance

Math word problems

Multi-hop QA
Logical reasoning

Xinyi Wang, Alfonso Amayuelas, Kexun Zhang, Liangming Pan, Wenhu Chen, William Yang Wang. Understanding Reasoning Ability of Language 
Models From the Perspective of Reasoning Paths Aggregation. ICML 2024.
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Takeaways

• Novel conclusions discovered by LLMs can be explained 
by aggregating reasoning paths seen at training time.

• LLMs’ reasoning ability can be improved by training on 
random walk augmented chain-of-thoughts.

Xinyi Wang, Alfonso Amayuelas, Kexun Zhang, Liangming Pan, Wenhu Chen, William Yang Wang. Understanding Reasoning Ability of Language 
Models From the Perspective of Reasoning Paths Aggregation. ICML 2024.
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Recap

Generalize from Text Frequency

77

Generalize from Demonstrations

Generalize from Existing Knowledge

LLM

Learn beyond surface form text frequency

Learn to aggregate reasoning paths seen 
at pretraining time

Learn latent intent variable governing the 
generation of pretraining data
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Other Works
78

Understanding LLMs

Address Foundational 
Limitations of Deep Learning

Open Source Contributions

[NeurIPS 2023, ICML 2024, ICLR 2025]

[NeurIPS 2021, ICLR 2023]

√

Spurious Correlation

Structured Reasoning [TMLR 2023, EMNLP 2023, COLM 2024]

Dataset

Survey

[NeurIPS 2021, EMNLP 2023]

[TACL 2024, TMLR 2024]
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Open the Black Box

LLM

Functionality 
of parameters

Effect of training 
and inference 
algorithms

Contribution of each 
training example

Model

Algorithm Data
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Open the Black Box

LLM

Model

Algorithm Data

Transparent internal 
reasoning

80



Office/Department/Division Name

Future Directions

Causal abstractions of LLMs

(Geiger et. al. 2021)

Transparent decision making
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Open the Black Box

LLM

Model

Algorithm Data Trace the origin of 
model behaviors
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Future Directions

Realistic synthetic data for understanding LLM behaviors

Train

(Liu et. al. 2023)

Controlled experiments
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Open the Black Box

LLM

Model

Algorithm Data
Understand deciding 
factors of training and 
inference algorithms
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Future Directions

Reinforcement learning v.s. fine-tuning

(Chu et. al. 2025)

Understanding algorithmic weaknesses

85
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Acknowledgement
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Thank you!
Questions?
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