
Office/Department/Division Name

Understanding Pre-trained Large Language Models
through a Probabilistic Lens

Xinyi Wang

5/5/2023

Computer Science

Office/Department/Division Name

Outline

• Background on large language models

• Recent works on understanding large language models

• Future directions and my current progress

• Q&A

Office/Department/Division Name

Background on large language models

Office/Department/Division Name

Language Model

• Definition: a probability distribution 𝑃 over sequences of words
𝑤1, 𝑤2, … , 𝑤𝑇.

• Different assumptions on decomposing this joint probability produce
different types of language models.

Bag of words model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 =ෑ

𝑖=1

𝑇

𝑝(𝑤𝑖)

N-gram model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 =ෑ

𝑖=1

𝑇

𝑝(𝑤𝑖|𝑤𝑖−1, 𝑤𝑖−2, … , 𝑤𝑖−𝑁)

Hidden Markov model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 = ෍

ℎ0,ℎ1,…,ℎ𝑇∈𝐻

𝑝(ℎ0)ෑ

𝑖=1

𝑇

𝑝 𝑤𝑖 ℎ𝑖 𝑝(ℎ𝑖|ℎ𝑖−1)

Classic
language
models:

Topic model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 =෍

𝜃

𝑝(𝜃)ෑ

𝑖=1

𝑇

𝑝 𝑤𝑖 𝑧𝑖 𝑝(𝑧𝑖|𝜃)

Office/Department/Division Name

Language Model

Bag of words model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 =ෑ

𝑖=1

𝑇

𝑝(𝑤𝑖)

N-gram model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 =ෑ

𝑖=1

𝑇

𝑝(𝑤𝑖|𝑤𝑖−𝑁, 𝑤𝑖−𝑁+1, … , 𝑤𝑖−1)

Hidden Markov model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 = ෍

ℎ0,ℎ1,…,ℎ𝑇∈𝐻

𝑝(ℎ0)ෑ

𝑖=1

𝑇

𝑝 𝑤𝑖 ℎ𝑖 𝑝(ℎ𝑖|ℎ𝑖−1)

Classic
language
models:

Word embedding model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇
2𝑐 ≈ෑ

𝑖=1

𝑇

ෑ

−𝑐≤𝑗≤𝑐,𝑗≠0

𝑝(𝑤𝑖+𝑗|𝑤𝑖)

Counting

Dynamic programming with
fixed transition matrix

Generative language model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 =ෑ

𝑖=1

𝑇

𝑝(𝑤𝑖|𝑤1, 𝑤2, … , 𝑤𝑖−1)

Neural
language
models: RNN, LSTM, Transformer (w/. decoder)

Effectively an embedding layer followed by
one-layer fully-connected neural network
with softmax activation

Masked language model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 ≈ෑ

𝑖=1

𝑇

𝑝(𝑤𝑖|𝑤1, … , 𝑤𝑖−1, 𝑤𝑖+1, … , 𝑤𝑇)

Transformer (w/. encoder)

Office/Department/Division Name

Beyond probability estimation

• While language models are trained to estimate the previous text sequence distribution,
the interesting part is that they are shown to be useful beyond distribution modeling.

• Word2Vec (Mikolov et al., 2013): a non-contextual word embedding model, using a
simple fully-connect neural network.

• Serves as a significantly better feature for many NLP tasks. Achieves State-of-the-art (SOTA)
performance (at that time) on many NLP tasks.

• It appears that the analogy between words can be expressed as simple arithmetic in the
Word2Vec embedding space. E.g. King – Man = Queen - Woman

• BERT (Devlin et al., 2018): a pre-trained masked language model, using an encoder-
only Transformer architecture.

• Serves as a good initialization for many downstream NLP tasks.

• SOTA performance (at that time) on many NLP tasks can be achieved by fine-tuning BERT on
corresponding training sets.

• GPT3 (Brown et al., 2020): a pre-trained generative language model, using a decoder-
only Transformer architecture.

• Serves as a general NLP task solver itself.

• SOTA or close to SOTA performance (at that time) on many NLP tasks can be achieved by few-shot,
even zero-shot prompting at inference time without any parameter updating.

Large lan
gu

age m
o

d
el

https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2005.14165

Office/Department/Division Name

Fine-tuning
• Use the pre-trained large language model as

a good starting point for learning downstream

NLP tasks.

• Expensive to train when the model is large.

• Training data required (not necessarily a large

amount).

• Parameter efficient fine-tuning: only tune a

small number of parameters in the model and

fix other parameters.

• Soft prompt tuning (Lester et al., 2021): add a few
trainable new tokens at the beginning of each
sequence for a specific task and fix all other
parameters.

• Head tuning (Peters etal., 2018): learning a
classifier on top of the frozen pre-trained model.

• Usually match the performance of full fine-tuning
with significantly less computation.

https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/1802.05365

Office/Department/Division Name

In-context learning

• Only works well for large enough generative language models (e.g. 175B
GPT3).

• Most common way to interact with pre-trained large language models
nowadays.

• Can be combined with chain-of-thoughts prompting (Wei et al., 2022).

(Brown et al., 2020) (Wei et al., 2020)

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2201.11903

Office/Department/Division Name

Exponential scaling law

• Experiments performed using GPT-like models: decoder-only Transformer, generative

language modeling objective. (Kaplan et al., 2020)

• The language model performance is measured by cross-entropy loss over a test set.

https://arxiv.org/abs/2001.08361

Office/Department/Division Name

Existing large language models

• Real-world exponential parameter growth of large language models (source).

20232018

https://lifearchitect.ai/models/

Office/Department/Division Name

Emergent abilities

• Definition: An ability is emergent if it is

not present in smaller models but is

present in larger models. (Wei et al.,

2022)

• The performance is near-random until

a certain critical threshold of scale is

reached, after which performance

increases to substantially above

random.

• Examples:

• Few-shot prompting (in-context learning)

for arithmetic, truthful QA, etc.

• Chain of thought prompting for solving

math word problems.

• Instruction following with instruction fine-

tuning.

https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2206.07682

Office/Department/Division Name

Recent works on understanding large
language models

Office/Department/Division Name

How to understand these phenomenon?

• Large language models (LLMs) are black-box deep neural networks that are hard

to know their mechanism inside.

• The best-performing LLMs are either not open source (e.g. PaLM) or only their APIs

are released (e.g. GPT4).

• Two main directions on understanding LLMs or Transformers:

• Mechanical: Some basic matrix and computer operations can be exactly constructed with a

Transformer (Lindner et al. 2023, Giannou et al. 2023)

• Bayesian: LLMs are implicitly inferring a latent variable from the prompt (Jiang et al. 2023)

• Two ways to empirically verify a proposed theory:

• Create synthetic data and pre-train a toy Transformer to perform experiment in a controlled
environment (Pros: easy to control. Cons: Not sure if can be applied to real LLMs.)

• Directly verify on real-world LLMs by design smarter experiments. (Cons: hard to control. Hard to

prove the exact point. Pros: confirmed to explain LLMs.)

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html
https://openai.com/research/gpt-4
https://arxiv.org/abs/2301.05062
https://arxiv.org/abs/2301.13196
https://arxiv.org/abs/2304.09960

Office/Department/Division Name

Understanding fine-tuning

• Bayesian:

• Natural task: the distribution of the next word, conditional on the context, can provide a strong

discriminative signal for the downstream task (Saunshi et al., 2021).

• Assumption: downstream labels are recoverable via a linear head applied to the conditional

token probabilities.

• Experiments: data from a simple task. E.g. linear regression.

• Hidden Markov Model data distribution: the first hidden state contains all the required information

to recover downstream task labels (Wei et al. NeurIPS 2021).

• Experiments: data generated from a synthetic distribution.

• Mechanical: ?

https://arxiv.org/abs/2010.03648
https://arxiv.org/abs/2106.09226

Office/Department/Division Name

Understanding in-context learning

• Bayesian: examine pre-training data distribution

• Hidden Markov Model (Xie, et al.).

• Compositional Attribute Grammar: language can be mapped to trees (Hahn et al.

2023)

• skewed Zipfian distribution: Burstiness, long tail, the dynamic meaning of words, etc

(Chan et al., 2022).

• The unambiguity of language (Jiang et al. 2023).

• Experiments: data generated from a synthetic distribution.

• Mechanical: how LLMs utilizing the few-shot demonstrations

• Mimic gradient descent at inference time (von Oswald et al. 2022, Dai et al. 2023)

• Smaller models are encoded in activation (Akyurek et al. 2022)

• Transformer itself is a learning algorithm (Li et al., 2023)

• Experiments: data from a simple task. E.g. linear regression.

• Dai et al. 2023 use pre-trained GPT2-like LLMs to verify their results.

https://arxiv.org/abs/2111.02080
https://arxiv.org/abs/2303.07971
https://arxiv.org/abs/2303.07971
https://arxiv.org/abs/2205.05055
https://arxiv.org/abs/2304.09960
https://arxiv.org/abs/2212.07677
https://arxiv.org/abs/2212.10559
https://arxiv.org/abs/2211.15661
https://arxiv.org/abs/2301.07067
https://arxiv.org/abs/2212.10559

Office/Department/Division Name

Understanding exponential scaling law

• A general empirical law for deep neural networks (Hestness, et al., 2017;
Rosenfeld et al., 2020).

• Theoretically, the power-law generalization error rate is well-known for
linear/kernel models (Caponnetto and De Vito, 2007).

• There are some theoretical works towards this direction, though usually
for fully-connect neural networks (Schmidt-Hieber, 2020; Suzuki, 2018).

https://arxiv.org/abs/1712.00409
https://arxiv.org/abs/1909.12673
https://link.springer.com/article/10.1007/s10208-006-0196-8
https://arxiv.org/abs/1708.06633
https://arxiv.org/abs/1810.08033

Office/Department/Division Name

Understanding emergent abilities

• Bayesian: the unambiguity of language + exact estimate of
the marginal distribution of language (Jiang et al. 2023).
• latent variable = intent of a message
• Unambiguity = can exactly infer the correct intent of a message
• Can explain why LLMs generate coherent continuations, do in-context

learning, chain-of-thought prompting, instruction following
• Problem: can LLMs precisely estimate the pre-train distribution? LeBrun

et al. 2022 find that GPT2s systematically underestimate relatively rare
text sequences, which constitute a significant portion of the long-tail
distribution of language. A similar idea has been used to detect
machine-generated text (Mitchell et al., 2023).

• Mechanical: ?

https://arxiv.org/abs/2304.09960
https://openreview.net/forum?id=bTteFbU99ye
https://openreview.net/forum?id=bTteFbU99ye
https://arxiv.org/abs/2301.11305

Office/Department/Division Name

Future directions and current progress

Office/Department/Division Name

Comments and future directions

• Most works on understanding LLMs are not intended to open the black box of

Transformers. Instead, they try to get around the internal mechanism of LLMs by

assuming they can perfectly estimate the pre-training distribution.

• There is a gap between the theoretical/empirical results derived with synthetic

data, and the real-world LLM behavior. E.g. Language distribution is not HMM, we

cannot have infinite demonstrations in a prompt, etc. There is no guarantee the

derived results can be generalized to the real-world scenario.

• There are also contradicting conclusions in the current literature. e.g. Xie et al.

(2022) show that LSTM can do in-context learning while Chan et al. (2022) show
only Transformer can do in-context learning. Min et al. (2022) show that ground

truth labels do not matter for demonstrations while Yoo et al. (2022) show that

ground truth labels matter.

https://arxiv.org/abs/2111.02080
https://arxiv.org/abs/2111.02080
https://arxiv.org/abs/2205.05055
https://arxiv.org/abs/2202.12837
https://arxiv.org/abs/2205.12685

Office/Department/Division Name

Current progress

• Goal: closing the gap between theory and real-world LLMs.

• Current progress: a step on verifying the latent concept variable

model for in-context learning using real-world LLMs.

• Large Language Models Are Implicitly Topic Models: Explaining

and Finding Good Demonstrations for In-Context Learning. Xinyi

Wang, Wanrong Zhu, William Wang. Preprint 2023.

https://arxiv.org/abs/2301.11916

Office/Department/Division Name

LLMs are implicitly topic models

• Assumption: the generated continuation is independent of the

prompt given the concept variable θ.

LLM: Topic model:

Our assumption:

Generated continuation Prompt LLMs implicitly infer a latent
concept variable θ from the
prompt

LLMs generate the continuation
exclusively based on the
inferred concept variable θ

Language model probability output by an LLM

Office/Department/Division Name

In-context learning

• How can we understand in-context learning in a real-world setting?

• How do we choose the demonstrations if we have a set of
annotated data?
• Similarity? (Liu et al. 2022; Su et al. 2022)
• Entropy of predicted labels? (Lu et al. 2022)

Office/Department/Division Name

Data generation direction matters

X

Y θ

e.g. sentiment analysis, topic classification,
emotion classification tasks

Text input

Label
(discrete)

Latent concept
variable

X

Y θ

e.g. linguistic analysis, hate speech detection

Text input

Label
(discrete)

Latent concept
variable

• Assumption: the data for each task is generated by a specific value

of θ. i.e. a different value of θ indicates a different task.

Bayes optimal classifier Bayes optimal classifier

Office/Department/Division Name

Causal v.s. anti-causal

sentiment analysis linguistic analysis

Topic classification

Emotion classification Hate speech detection

• 4-shot in-context learning accuracy with GPT2-large.

Office/Department/Division Name

Analysis in-context learning classifier

• We want to make the above in-context learning classifier

as close to the Bayes optimal classifier as possible, which means we need to

make as concentrated on the optimal θ value

corresponding to task d as possible.

• We can use the above conclusion to first learn a delegate of the optimal

latent value, and then use the delegate to choose the best demonstrations

from a set of annotated data.

Latent concept variable learning
(soft prompt tuning)

Demonstration selection

Office/Department/Division Name

Algorithm overview

Office/Department/Division Name

Latent Concept Learning

• Add a few new concept
tokens to the original
vocabulary of the LLM.

• Train the embedding of
these concept tokens
while freezing all other
parameters, such that the
LLM can predict the label
Y given X and the
concept tokens as
prefixes.

• Use GPT2-large in
practice.

LLM

… …

θ X

Cross entropy loss
log𝑃𝑀(Y|θ,X)

compute

Update
embeddings

…

Y

Dataset

Office/Department/Division Name

Demonstration Selection

• Compute the LM
probability of predicting
the concept tokens
given an example (X, Y).

• Then choose the top-k
examples producing
the highest probabilities
as the demonstrations
for in-context learning.

• Use GPT2-large in
practice.

LLM

… …

X Y

Language model
probability
𝑃𝑀(θ|X,Y)

compute

Select (X,Y) pairs

…

θ

Dataset

Office/Department/Division Name

In-context Learning

• Test the performance of
the chosen k
demonstrations by using
them for in-context
learning on a separate
test set.

• Different LLMs from the
previous stages can be
used.

LLM

… …

Test Y

Test X

infer
… … … …

…

(X1,Y1), (X2,Y2), …, (Xk,Yk)

Office/Department/Division Name

Main results

● Results are averaged over 8 text classification datasets, each experiment is repeated by 5

runs.

● We select the optimal demonstrations by GPT2-large, and use the same set of

demonstrations for all other LLMs.

Office/Department/Division Name

Does latent variable really help?

● Random tokens selected from the vocabulary are in place of the learned concept tokens for selecting

demonstrations.

● Results are averaged over 8 text classification datasets, each experiment is repeated by 5 runs.

● We select the optimal demonstrations by GPT2-large, and use the same set of demonstrations for all other

LLMs.

Office/Department/Division Name

A TSNE plot of the learned concept tokens

• SST2: movie review sentiment

analysis

• FPB: financial news sentiment

analysis

• COLA: grammar error
detection

• DBpedia: topic classification

• ETHOS-SO and ETHOS-R: hate

speech detection

• EmoC and EmoS: emotion
classification

Office/Department/Division Name

Conclusions

● Real-world LLMs implicitly infer a latent concept variable
during in-context learning time.

● When have a set of annotated data, we can first learn a
delegate of the concept variable and then select the
demonstrations that can best represent/infer the concept
variable.

● The selected demonstrations can be transferred across
different-size LLMs pre-trained on similar text distributions.
This indicates such behavior of LLMs comes from the pre-
training data distribution.

Office/Department/Division Name

Thank you!
Questions?

	Slide 1: Understanding Pre-trained Large Language Models through a Probabilistic Lens
	Slide 2: Outline
	Slide 3: Background on large language models
	Slide 4: Language Model
	Slide 5: Language Model
	Slide 6: Beyond probability estimation
	Slide 7: Fine-tuning
	Slide 8: In-context learning
	Slide 9: Exponential scaling law
	Slide 10: Existing large language models
	Slide 11: Emergent abilities
	Slide 12: Recent works on understanding large language models
	Slide 13: How to understand these phenomenon?
	Slide 14: Understanding fine-tuning
	Slide 15: Understanding in-context learning
	Slide 16: Understanding exponential scaling law
	Slide 17: Understanding emergent abilities
	Slide 18: Future directions and current progress
	Slide 19: Comments and future directions
	Slide 20: Current progress
	Slide 21: LLMs are implicitly topic models
	Slide 22: In-context learning
	Slide 23: Data generation direction matters
	Slide 24: Causal v.s. anti-causal
	Slide 25: Analysis in-context learning classifier
	Slide 26: Algorithm overview
	Slide 27: Latent Concept Learning
	Slide 28: Demonstration Selection
	Slide 29: In-context Learning
	Slide 30: Main results
	Slide 31: Does latent variable really help?
	Slide 32: A TSNE plot of the learned concept tokens
	Slide 33: Conclusions
	Slide 34: Thank you!

