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Background on large language models
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Language Model

• Definition: a probability distribution 𝑃 over sequences of words 
𝑤1, 𝑤2, … , 𝑤𝑇.

• Different assumptions on decomposing this joint probability produce 
different types of language models.

Bag of words model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 =ෑ

𝑖=1

𝑇

𝑝(𝑤𝑖)

N-gram model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 =ෑ

𝑖=1

𝑇

𝑝(𝑤𝑖|𝑤𝑖−1, 𝑤𝑖−2, … , 𝑤𝑖−𝑁)

Hidden Markov model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 = ෍

ℎ0,ℎ1,…,ℎ𝑇∈𝐻

𝑝(ℎ0)ෑ

𝑖=1

𝑇

𝑝 𝑤𝑖 ℎ𝑖 𝑝(ℎ𝑖|ℎ𝑖−1)

Classic 
language 
models:

Topic model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 =෍

𝜃

𝑝(𝜃)ෑ

𝑖=1

𝑇

𝑝 𝑤𝑖 𝑧𝑖 𝑝(𝑧𝑖|𝜃)
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Language Model

Bag of words model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 =ෑ

𝑖=1

𝑇

𝑝(𝑤𝑖)

N-gram model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 =ෑ

𝑖=1

𝑇

𝑝(𝑤𝑖|𝑤𝑖−𝑁, 𝑤𝑖−𝑁+1, … , 𝑤𝑖−1)

Hidden Markov model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 = ෍

ℎ0,ℎ1,…,ℎ𝑇∈𝐻

𝑝(ℎ0)ෑ

𝑖=1

𝑇

𝑝 𝑤𝑖 ℎ𝑖 𝑝(ℎ𝑖|ℎ𝑖−1)

Classic 
language 
models:

Word embedding model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇
2𝑐 ≈ෑ

𝑖=1

𝑇

ෑ

−𝑐≤𝑗≤𝑐,𝑗≠0

𝑝(𝑤𝑖+𝑗|𝑤𝑖)

Counting

Dynamic programming with 
fixed transition matrix

Generative language model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 =ෑ

𝑖=1

𝑇

𝑝(𝑤𝑖|𝑤1, 𝑤2, … , 𝑤𝑖−1)

Neural 
language 
models: RNN, LSTM, Transformer (w/. decoder)

Effectively an embedding layer followed by 
one-layer fully-connected neural network 
with softmax activation

Masked language model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 ≈ෑ

𝑖=1

𝑇

𝑝(𝑤𝑖|𝑤1, … , 𝑤𝑖−1, 𝑤𝑖+1, … , 𝑤𝑇)

Transformer (w/. encoder)
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Beyond probability estimation

• While language models are trained to estimate the previous text sequence distribution, 
the interesting part is that they are shown to be useful beyond distribution modeling.

• Word2Vec (Mikolov et al., 2013): a non-contextual word embedding model, using a 
simple fully-connect neural network. 

• Serves as a significantly better feature for many NLP tasks. Achieves State-of-the-art (SOTA) 
performance (at that time) on many NLP tasks.

• It appears that the analogy between words can be expressed as simple arithmetic in the 
Word2Vec embedding space. E.g. King – Man = Queen - Woman

• BERT (Devlin et al., 2018): a pre-trained masked language model, using an encoder-
only Transformer architecture.

• Serves as a good initialization for many downstream NLP tasks.

• SOTA performance (at that time) on many NLP tasks can be achieved by fine-tuning BERT on 
corresponding training sets.

• GPT3 (Brown et al., 2020): a pre-trained generative language model, using a decoder-
only Transformer architecture.

• Serves as a general NLP task solver itself.

• SOTA or close to SOTA performance (at that time) on many NLP tasks can be achieved by few-shot, 
even zero-shot prompting at inference time without any parameter updating.

Large lan
gu

age m
o

d
el

https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2005.14165
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Fine-tuning
• Use the pre-trained large language model as 

a good starting point for learning downstream 

NLP tasks.

• Expensive to train when the model is large.

• Training data required (not necessarily a large 

amount).

• Parameter efficient fine-tuning: only tune a 

small number of parameters in the model and 

fix other parameters.

• Soft prompt tuning (Lester et al., 2021): add a few 
trainable new tokens at the beginning of each 
sequence for a specific task and fix all other 
parameters.

• Head tuning (Peters etal., 2018): learning a 
classifier on top of the frozen pre-trained model.

• Usually match the performance of full fine-tuning 
with significantly less computation.

https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/1802.05365
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In-context learning

• Only works well for large enough generative language models (e.g. 175B 
GPT3).

• Most common way to interact with pre-trained large language models 
nowadays.

• Can be combined with chain-of-thoughts prompting (Wei et al., 2022).

(Brown et al., 2020) (Wei et al., 2020)

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2201.11903
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Exponential scaling law

• Experiments performed using GPT-like models: decoder-only Transformer, generative 

language modeling objective. (Kaplan et al., 2020)

• The language model performance is measured by cross-entropy loss over a test set.

https://arxiv.org/abs/2001.08361
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Existing large language models

• Real-world exponential parameter growth of large language models (source).

20232018

https://lifearchitect.ai/models/
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Emergent abilities

• Definition: An ability is emergent if it is 

not present in smaller models but is 

present in larger models. (Wei et al., 

2022)

• The performance is near-random until 

a certain critical threshold of scale is 

reached, after which performance 

increases to substantially above 

random.

• Examples:

• Few-shot prompting (in-context learning) 

for arithmetic, truthful QA, etc.

• Chain of thought prompting for solving 

math word problems.

• Instruction following with instruction fine-

tuning.

https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2206.07682
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Recent works on understanding large 
language models
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How to understand these phenomenon?

• Large language models (LLMs) are black-box deep neural networks that are hard 

to know their mechanism inside.

• The best-performing LLMs are either not open source (e.g. PaLM) or only their APIs 

are released (e.g. GPT4).

• Two main directions on understanding LLMs or Transformers:

• Mechanical: Some basic matrix and computer operations can be exactly constructed with a 

Transformer (Lindner et al. 2023, Giannou et al. 2023)

• Bayesian: LLMs are implicitly inferring a latent variable from the prompt (Jiang et al. 2023)

• Two ways to empirically verify a proposed theory:   

• Create synthetic data and pre-train a toy Transformer to perform experiment in a controlled 
environment (Pros: easy to control. Cons: Not sure if can be applied to real LLMs.)

• Directly verify on real-world LLMs by design smarter experiments. (Cons: hard to control. Hard to 

prove the exact point. Pros: confirmed to explain LLMs.)

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html
https://openai.com/research/gpt-4
https://arxiv.org/abs/2301.05062
https://arxiv.org/abs/2301.13196
https://arxiv.org/abs/2304.09960
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Understanding fine-tuning

• Bayesian:

• Natural task: the distribution of the next word, conditional on the context, can provide a strong 

discriminative signal for the downstream task (Saunshi et al., 2021).

• Assumption: downstream labels are recoverable via a linear head applied to the conditional 

token probabilities. 

• Experiments: data from a simple task. E.g. linear regression.

• Hidden Markov Model data distribution: the first hidden state contains all the required information 

to recover downstream task labels (Wei et al. NeurIPS 2021).

• Experiments: data generated from a synthetic distribution.

• Mechanical: ?

https://arxiv.org/abs/2010.03648
https://arxiv.org/abs/2106.09226
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Understanding in-context learning

• Bayesian: examine pre-training data distribution

• Hidden Markov Model (Xie, et al.).

• Compositional Attribute Grammar: language can be mapped to trees (Hahn et al. 

2023)

• skewed Zipfian distribution: Burstiness, long tail, the dynamic meaning of words, etc

(Chan et al., 2022).

• The unambiguity of language (Jiang et al. 2023).

• Experiments: data generated from a synthetic distribution.

• Mechanical: how LLMs utilizing the few-shot demonstrations

• Mimic gradient descent at inference time (von Oswald et al. 2022, Dai et al. 2023 )

• Smaller models are encoded in activation (Akyurek et al. 2022)

• Transformer itself is a learning algorithm (Li et al., 2023)

• Experiments: data from a simple task. E.g. linear regression.

• Dai et al. 2023 use pre-trained GPT2-like LLMs to verify their results.

https://arxiv.org/abs/2111.02080
https://arxiv.org/abs/2303.07971
https://arxiv.org/abs/2303.07971
https://arxiv.org/abs/2205.05055
https://arxiv.org/abs/2304.09960
https://arxiv.org/abs/2212.07677
https://arxiv.org/abs/2212.10559
https://arxiv.org/abs/2211.15661
https://arxiv.org/abs/2301.07067
https://arxiv.org/abs/2212.10559
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Understanding exponential scaling law

• A general empirical law for deep neural networks (Hestness, et al., 2017; 
Rosenfeld et al., 2020). 

• Theoretically, the power-law generalization error rate is well-known for 
linear/kernel models (Caponnetto and De Vito, 2007).

• There are some theoretical works towards this direction, though usually 
for fully-connect neural networks (Schmidt-Hieber, 2020; Suzuki, 2018). 

https://arxiv.org/abs/1712.00409
https://arxiv.org/abs/1909.12673
https://link.springer.com/article/10.1007/s10208-006-0196-8
https://arxiv.org/abs/1708.06633
https://arxiv.org/abs/1810.08033
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Understanding emergent abilities

• Bayesian: the unambiguity of language + exact estimate of 
the marginal distribution of language (Jiang et al. 2023).
• latent variable = intent of a message
• Unambiguity = can exactly infer the correct intent of a message
• Can explain why LLMs generate coherent continuations, do in-context 

learning, chain-of-thought prompting, instruction following
• Problem: can LLMs precisely estimate the pre-train distribution? LeBrun 

et al. 2022 find that GPT2s systematically underestimate relatively rare 
text sequences, which constitute a significant portion of the long-tail 
distribution of language. A similar idea has been used to detect 
machine-generated text (Mitchell et al., 2023).

• Mechanical: ? 

https://arxiv.org/abs/2304.09960
https://openreview.net/forum?id=bTteFbU99ye
https://openreview.net/forum?id=bTteFbU99ye
https://arxiv.org/abs/2301.11305
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Future directions and current progress
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Comments and future directions

• Most works on understanding LLMs are not intended to open the black box of 

Transformers. Instead, they try to get around the internal mechanism of LLMs by 

assuming they can perfectly estimate the pre-training distribution.

• There is a gap between the theoretical/empirical results derived with synthetic 

data, and the real-world LLM behavior. E.g. Language distribution is not HMM, we 

cannot have infinite demonstrations in a prompt, etc. There is no guarantee the 

derived results can be generalized to the real-world scenario. 

• There are also contradicting conclusions in the current literature. e.g. Xie et al. 

(2022) show that LSTM can do in-context learning while Chan et al. (2022) show 
only Transformer can do in-context learning. Min et al. (2022) show that ground 

truth labels do not matter for demonstrations while Yoo et al. (2022) show that 

ground truth labels matter.

https://arxiv.org/abs/2111.02080
https://arxiv.org/abs/2111.02080
https://arxiv.org/abs/2205.05055
https://arxiv.org/abs/2202.12837
https://arxiv.org/abs/2205.12685
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Current progress

• Goal: closing the gap between theory and real-world LLMs.

• Current progress: a step on verifying the latent concept variable 

model for in-context learning using real-world LLMs.

• Large Language Models Are Implicitly Topic Models: Explaining 

and Finding Good Demonstrations for In-Context Learning. Xinyi 

Wang, Wanrong Zhu, William Wang. Preprint 2023.

https://arxiv.org/abs/2301.11916
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LLMs are implicitly topic models

• Assumption: the generated continuation is independent of the 

prompt given the concept variable θ.

LLM: Topic model:

Our assumption:

Generated continuation Prompt LLMs implicitly infer a latent 
concept variable θ from the 
prompt

LLMs generate the continuation 
exclusively based on the 
inferred concept variable θ

Language model probability output by an LLM
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In-context learning

• How can we understand in-context learning in a real-world setting?

• How do we choose the demonstrations if we have a set of 
annotated data? 
• Similarity? (Liu et al. 2022; Su et al. 2022) 
• Entropy of predicted labels? (Lu et al. 2022)
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Data generation direction matters

X

Y θ

e.g. sentiment analysis, topic classification, 
emotion classification tasks

Text input

Label 
(discrete)

Latent concept 
variable

X

Y θ

e.g. linguistic analysis, hate speech detection

Text input

Label 
(discrete)

Latent concept 
variable

• Assumption: the data for each task is generated by a specific value 

of θ. i.e. a different value of θ indicates a different task.

Bayes optimal classifier Bayes optimal classifier
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Causal v.s. anti-causal

sentiment analysis linguistic analysis

Topic classification

Emotion classification Hate speech detection

• 4-shot in-context learning accuracy with GPT2-large.
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Analysis in-context learning classifier

• We want to make the above in-context learning classifier                                                  

as close to the Bayes optimal classifier as possible, which means we need to 

make                                                 as concentrated on the optimal θ value 

corresponding to task d as possible.

• We can use the above conclusion to first learn a delegate of the optimal 

latent value, and then use the delegate to choose the best demonstrations 

from a set of annotated data.

Latent concept variable learning 
(soft prompt tuning)

Demonstration selection
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Algorithm overview
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Latent Concept Learning

• Add a few new concept 
tokens to the original 
vocabulary of the LLM. 

• Train the embedding of 
these concept tokens 
while freezing all other 
parameters, such that the 
LLM can predict the label 
Y given X and the 
concept tokens as 
prefixes.

• Use GPT2-large in 
practice.

LLM

… …

θ X

Cross entropy loss
log𝑃𝑀(Y|θ,X)

compute

Update 
embeddings

…

Y

Dataset
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Demonstration Selection

• Compute the LM 
probability of predicting 
the concept tokens 
given an example (X, Y). 

• Then choose the top-k 
examples producing 
the highest probabilities 
as the demonstrations 
for in-context learning.

• Use GPT2-large in 
practice.

LLM

… …

X Y

Language model 
probability
𝑃𝑀(θ|X,Y)

compute

Select (X,Y) pairs

…

θ

Dataset
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In-context Learning

• Test the performance of 
the chosen k 
demonstrations by using 
them for in-context 
learning on a separate 
test set. 

• Different LLMs from the 
previous stages can be 
used.

LLM

… …

Test Y

Test X

infer
… … … …

…

(X1,Y1), (X2,Y2), …, (Xk,Yk)
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Main results

● Results are averaged over 8 text classification datasets, each experiment is repeated by 5 

runs.

● We select the optimal demonstrations by GPT2-large, and use the same set of 

demonstrations for all other LLMs.
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Does latent variable really help?

● Random tokens selected from the vocabulary are in place of the learned concept tokens for selecting 

demonstrations.

● Results are averaged over 8 text classification datasets, each experiment is repeated by 5 runs.

● We select the optimal demonstrations by GPT2-large, and use the same set of demonstrations for all other 

LLMs.
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A TSNE plot of the learned concept tokens

• SST2: movie review sentiment 

analysis

• FPB: financial news sentiment 

analysis

• COLA: grammar error 
detection

• DBpedia: topic classification

• ETHOS-SO and ETHOS-R: hate 

speech detection

• EmoC and EmoS: emotion 
classification
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Conclusions

● Real-world LLMs implicitly infer a latent concept variable 
during in-context learning time.

● When have a set of annotated data, we can first learn a 
delegate of the concept variable and then select the 
demonstrations that can best represent/infer the concept 
variable.

● The selected demonstrations can be transferred across 
different-size LLMs pre-trained on similar text distributions. 
This indicates such behavior of LLMs comes from the pre-
training data distribution.
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Thank you!
Questions?
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