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Language Model

• Definition: a probability distribution 𝑃 over sequences of words 
𝑤1, 𝑤2, … , 𝑤𝑇.

• Different assumptions on decomposing this joint probability produce 
different types of language models.

Bag of words model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 =ෑ

𝑖=1

𝑇

𝑝(𝑤𝑖)

Hidden Markov model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 = ෍

ℎ0,ℎ1,…,ℎ𝑇∈𝐻

𝑝(ℎ0)ෑ

𝑖=1

𝑇

𝑝 𝑤𝑖 ℎ𝑖 𝑝(ℎ𝑖|ℎ𝑖−1)

Classic 
language 
models:

Neural 
language 
models:

Generative language model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 =ෑ

𝑖=1

𝑇

𝑝(𝑤𝑖|𝑤1, 𝑤2, … , 𝑤𝑖−1)

Masked language model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 =ෑ

𝑖=1

𝑇

𝑝(𝑤𝑖|𝑤1, … , 𝑤𝑖−1, 𝑤𝑖+1, … , 𝑤𝑇)



Office/Department/Division Name

Existing large language models

•  Real-world exponential parameter growth of large language models (source).

https://lifearchitect.ai/models/
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Curious capabilities of LLMs

• Fine-tuning: pre-trained LLMs are good starting 
points for downstream tasks.

• Prompting: use a LLM as it is. Usually require 
instruction tuning.

• In-context learning (Brown et al., 2020)

• chain-of-thoughts prompting (Wei et al., 
2022)

• …

• Scaling:

• Exponential scaling law: test loss v.s. model 
size, dataset size, compute (Kaplan et al., 
2020)

• Emergent abilities: An ability is emergent if it 
is not present in smaller models but is present 
in larger models. (Wei et al., 2022) (Brown et al., 2020)

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2005.14165
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How to understand in-context learning?

Large Language 
Model
(LLM)

(X1, Y1)

(X2, Y2)

(Xk, Yk)

…

Demonstrations
(X, ?)

Y

Test example

Why LLMs can do in-context learning:
● Pretraining distribution? HMM (Xie et al., 2022)? 

Long tailed? Burstiness (Chan et al. 2022)?
● Mimicking gradient descent? (von Oswald et al. 

2022, Akyurek et al. 2022, Dai et al. 2023)

In-context learning is highly unstable:
● How to choose a set of demonstrations if we 

have some annotated data? Similarity? (Liu et 
al. 2022; Su et al. 2022) Entropy of predicted 
labels? (Lu et al. 2022)

https://arxiv.org/pdf/2212.10559.pdf
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Large Language Models are Implicitly Topic Models:
Explaining and Finding Good Demonstrations for In-
Context Learning

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, William Yang 
Wang (NeurIPS 2023)

http://arxiv.org/abs/2301.11916
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LLMs are implicitly topic models

• Assumption: the generated continuation is independent of the 

prompt given the concept variable θ.

LLM: Topic model:

Our assumption:

Generated continuation Prompt LLMs implicitly infer a latent 
concept variable θ from the 
prompt

LLMs generate the continuation 
exclusively based on the 
inferred concept variable θ

Language model probability output by an LLM
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Data generation direction matters

X

Y θ

e.g. sentiment analysis, topic classification, 
emotion classification tasks

Text input

Label 
(discrete)

Latent concept 
variable

X

Y θ

e.g. linguistic analysis, hate speech detection

Text input

Label 
(discrete)

Latent concept 
variable

• Assumption: the data for each task is generated by a specific value 

of θ. i.e. a different value of θ indicates a different task.

Bayes optimal classifier Bayes optimal classifier
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Causal v.s. anti-causal

sentiment analysis linguistic analysis

Topic classification

Emotion classification Hate speech detection

• 4-shot in-context learning accuracy with GPT2-large.
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Analysis in-context learning classifier

• We want to make the above in-context learning classifier                                                  

as close to the Bayes optimal classifier as possible, which means we need to 

make                                                 as concentrated on the θ value 

corresponding to task d as possible.

• We can use the above conclusion to first learn a delegate of the true latent 

concept variable, and then use the delegate to choose the best 

demonstrations from a set of annotated data.

Latent concept variable learning 
(soft prompt tuning)

Demonstration selection
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Algorithm overview



Office/Department/Division Name

Latent Concept Learning

• Add a few new concept 
tokens to the original 
vocabulary of the LLM. 

• Train the embedding of 
these concept tokens 
while freezing all other 
parameters, such that the 
LLM can predict the label 
Y given X and the 
concept tokens as 
prefixes.

• Use GPT2-large in 
practice.

LLM

… …

θ X

Cross entropy loss
log𝑃𝑀(Y|θ,X)

compute

Update 
embeddings

…

Y

Dataset
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Demonstration Selection

• Compute the LM 
probability of predicting 
the concept tokens 
given an example (X, Y). 

• Then choose the top-k 
examples producing 
the highest probabilities 
as the demonstrations 
for in-context learning.

• Use GPT2-large in 
practice.

LLM

… …

X Y

Language model 
probability
𝑃𝑀(θ|X,Y)

compute

Select (X,Y) pairs

…

θ

Dataset
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In-context Learning

• Test the performance of 
the chosen k 
demonstrations by using 
them for in-context 
learning on a separate 
test set. 

• Different LLMs from the 
previous stages can be 
used.

• Use different sizes GPTs 
in practice.

LLM

… …

Test Y

Test X

infer
… … … …

…

(X1,Y1), (X2,Y2), …, (Xk,Yk)
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Main results

● Results are averaged over 8 text classification datasets, each experiment is repeated by 5 

runs.

● We select the optimal demonstrations by GPT2-large, and use the same set of 

demonstrations for all other LLMs.
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A TSNE plot of the learned concept tokens

• SST2: movie review sentiment 

analysis

• FPB: financial news sentiment 

analysis

• COLA: grammar error 
detection

• DBpedia: topic classification

• ETHOS-SO and ETHOS-R: hate 

speech detection

• EmoC and EmoS: emotion 
classification
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Takeaways

● Real-world LLMs implicitly infer a latent concept variable 
during in-context learning time.

● When have a set of annotated data, we can first learn a 
delegate of the concept variable and then select the 
demonstrations that can best represent/infer the concept 
variable.

● The selected demonstrations can be transferred across 
different-size LLMs pre-trained on similar text distributions. 
This indicates such behavior of LLMs comes from the pre-
training data distribution.
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Guiding Language Model Reasoning with Planning 
Tokens
Xinyi Wang, Lucas Caccia, Oleksiy Ostapenko, Xingdi Yuan, Alessandro 
Sordoni (Arxiv)

https://arxiv.org/abs/2310.05707
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Chain-of-thoughts reasoning

• Question: Every day, Wendi feeds each of her chickens three 
cups of mixed chicken feed, containing seeds, mealworms 
and vegetables to help keep them healthy.  She gives the 
chickens their feed in three separate meals. In the morning, 
she gives her flock of chickens 15 cups of feed.  In the 
afternoon, she gives her chickens another 25 cups of 
feed.  How many cups of feed does she need to give her 
chickens in the final meal of the day if the size of Wendi's 
flock is 20 chickens?

• If each chicken eats 3 cups of feed per day, then for 20 
chickens they would need 3*20=<<3*20=60>>60 cups of feed 
per day.

• If she feeds the flock 15 cups of feed in the morning, and 25 
cups in the afternoon, then the final meal would require 60-
15-25=<<60-15-25=20>>20 cups of chicken feed.

• The answer is: 20

Question

Step 1

Step 2

Step N

Answer

… …
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Planning errors made by LLMs 
Question: Every day, Wendi feeds each of her chickens three cups of mixed chicken feed, containing seeds, 
mealworms and vegetables to help keep them healthy.  She gives the chickens their feed in three separate 
meals. In the morning, she gives her flock of chickens 15 cups of feed.  In the afternoon, she gives her 
chickens another 25 cups of feed.  How many cups of feed does she need to give her chickens in the final 
meal of the day if the size of Wendi's flock is 20 chickens?

Every day, Wendi gives her chickens 15 
cups of feed in the morning + 25 cups of 
feed in the afternoon = <<15+25=40>>40 
cups of feed.

If she has 20 chickens and she feeds them 
40 cups of feed every day, then each 
chicken gets 40/20 = <<40/20=2>>2 cups 
of feed per chicken.

The answer is: 2

<prefix> <+> Wendi gives her flock 15 cups of feed in the 
morning and another 25 cups in the afternoon, for a total of 
15+25 = <<15+25=40>>40 cups of feed. 

<prefix> <*> If Wendi has 20 chickens, then she needs 20*3 
= <<20*3=60>>60 cups of feed to feed her flock. 

<prefix> <-> If Wendi has already given her flock 40 cups of 
feed, then she needs to give her flock 60-40 = <<60-
40=20>>20 more cups of feed. 

<prefix> <answer> The answer is: 20

Vanilla supervised fine tuning Fine tuning with arithmetic planning tokens 

* Drifting away 
from the correct 
reasoning flow
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A Bayesian view of chain-of-thoughts

Latent variable distribution only 
drastically changes at the 
beginning of each CoT step

Simplified assumption: there is a discrete planning variable governing 
each chain-of-thoughts step.
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Planning tokens
Question

Step 1

Step 2

Step N

Answer

… …

Planning 
tokens

Planning 
tokens

Planning 
tokens

Planning 
tokens

<prefix> <+> Wendi gives her flock 15 cups of feed in the 
morning and another 25 cups in the afternoon, for a total of 
15+25 = <<15+25=40>>40 cups of feed. 

<prefix> <*> If Wendi has 20 chickens, then she needs 20*3 = 
<<20*3=60>>60 cups of feed to feed her flock. 

<prefix> <-> If Wendi has already given her flock 40 cups of 
feed, then she needs to give her flock 60-40 = <<60-40=20>>20 
more cups of feed. 

<prefix> <answer> The answer is: 20

General 
planning 
tokens

Specialized planning tokens

Idea: 
better 
control of 
reasoning 
flow
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Training with planning tokens

𝑃𝜑(𝑇𝑖|𝑆𝑖 , 𝑆𝑐𝑜𝑛𝑡𝑒𝑥)

ෑ

𝑖=1

𝑁

𝑃𝜃(𝑇𝑖|𝑄, 𝑇1, 𝑆1, … , 𝑇𝑖−1, 𝑆𝑖−1)𝑃𝜃(𝑆𝑖|𝑄, 𝑇1, 𝑆1, … , 𝑇𝑖−1, 𝑆𝑖−1, 𝑇𝑖)

Q

S1

S2

SN

A

… …

T1

T2

TN

TA

Assign a planning token to each reasoning step in 
the training set

Only tune the embeddings of the planning tokens and 
some helping adapters (e.g. LORA)

LLM
(very large)

Step classifier
(light weight)

Plan Generate

𝑇𝑖 ∈ Ω

* Note: to increase the representation capacity, the planning token can be a sequence 
of tokens.
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Step classifiers

Si

Planning 
token 1

Planning token 2

Planning token 3

Arithmetic Clustering Latent

Step embedding

MLP

β

Gaussian softmax

MLP

Reconstructed embedding

Contrastive 
loss

MSE Reconstruction loss

Planning token

* Reasoning steps embedded with T5 encoder
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Planning tokens implementation

𝑊𝑇

Output

‘

‘ 𝑊𝑇
′

Planning 
token output 
embeddings

Planning 
token input 
embeddings

Pretrained LLM: Llama 2 (7B)
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Combination with parameter efficient tuning

𝑊𝑇

Output

‘

‘ 𝑊𝑇
′

Planning 
token output 
embeddings

Planning 
token input 
embeddings

LORA adapters 
on MLP modules

Pretrained LLM: Llama 2 (7B)
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Main results
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Reasoning length effect
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Error types predicted by GPT4

Error type Misunderstanding of question Computation 
errors

Inaccurate extraction 
of question 
information

Wrong application of 
math knowledge

Wrong 
logic

Example Question: …How many cups of 
feed does she need to give her 
chickens in the final meal of 
the day…
…then each chicken gets 40/20 
= <<40/20=2>>2 cups of feed 
per chicken. The answer is: 2

…7 + 3301x = 
3371x…

Question: …He spends 
the next half-hour 
driving at a speed of 
30mph…
…He drove 2 hours at 
30mph so he traveled 
2*30=<<2*30=60>>60 
miles…

…The number of feet 
the plane is from the 
ground is the target 
of a geometric 
sequence…

…$2ab = 
12 = 2^3 
\cdot 
b^2$...

N/A 17 48 55 4 48

SQ-VAE 21 44 42 4 50
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Takeaways

• Planning tokens improve LLM’s math reasoning 
performance by (a) increasing the reasoning sequence 
capacity, (b) making LLM a mix-of-expert model for 
different reasoning types.

• Planning tokens improve the intra-step consistency.

• Concurrent work shows that similar method (our general 
baseline) also works on QA tasks at pre-training time (Goyal 
et al. 2023).

https://arxiv.org/abs/2310.02226
https://arxiv.org/abs/2310.02226
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Thank you!
Questions?
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