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Language Model

 Definition: a probability distribution P over sequences of words
Wi, Wa, ..., Wr.

* Different assumptions on decomposing this joint probability produce

different types of language models.

Classic
language
models:

Neural
language
models:

Bag of words model

T T
pOwrw, owr) = [ [pwd || pOowewn) = " w0 [ [ponlnopchuthi o)
i=1 i=1

Hidden Markov model

ho,h1,...hEH

Generative language model

T
p(Wl, W, ...,WT) - Hp(wllwll W, '--)Wi—l)
=1

Masked language model

T
p(erWZJ sy WT) - HP(Wilwlr o Wi, Wig1, o) WT)
i=1
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Existing large language models
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« Real-world exponential parameter growth of large language models (source).
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https://lifearchitect.ai/models/

Curious capabilities of LLMs

 Fine-tuning: pre-frained LLMs are good starting
points for downstream tasks.

* Prompting: use a LLM as it is. Usually require
instfruction tuning.
* In-context learning (Brown et al., 2020)

« chain-of-thoughts prompting (Wei et al.,
2022)

« Scaling:
- Exponential scaling law: test [oss v.s. model

size, dataset size, compute (Kaplan et al.,
2020)

- Emergent abilities: An ability is emergent if it
Is not present in smaller models but is present
in larger models. (Wei et al., 2022)

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Translate English to French: task description
cheese == prompt
Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter == loutre de mer examples
peppermint => menthe poivrée

plush girafe == girafe peluche

cheese == prompt

(Brown et al., 2020)
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How to understand in-context learning?

Test example

(X, ?)
Demonstrations @
(Xlr Yl) L L
arge Language
X5, Y
( 2 2) Model |:> Y
' (LLM)
e

—

Why LLMs can do in-context learning:

e Pretraining distribution? HMM (Xie et al., 2022)?
Long tailed? Burstiness (Chan et al. 2022)?

e Mimicking gradient descent? (von Oswald et al.
2022, Akyurek et al. 2022, Dai et al. 2023)

In-context learning is highly unstable:
e How to choose a set of demonstrations if we
have some annotated data? Similarity? (Liu et

al. 2022; Su et al. 2022) Entropy of predicted
labels? (Lu et al. 2022)
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https://arxiv.org/pdf/2212.10559.pdf
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Large Language Models are Implicitly Topic Models:
Explaining and Finding Good Demonstrations for In-

Context Learning

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, William Yang
WELI:4 )


http://arxiv.org/abs/2301.11916

LLMs are implicitly topic models

T

LLM: P(wlﬂ’) — “lP(wi\wi_l,...,wl) Topic model: P('LULT) — / P(w1T|0)P(9)d9
| ©

Language model probability output by an LLM
Our assumption: (wt—|—1:T|w1:t) — / P]\[ ’wt+1 T ’9)PM 0|w1 t do
/ /’ © /» ﬁ
Generated continuation Prompt  LLMs generate the continuation ~ LLMs implicitly infer a latent
exclusively based on the concept variable 8 from the

inferred concept variable 6 prompt

« Assumption: the generated continuation is independent of the
prompt given the concept variable 6.
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Data generation direction mq’r’rers

Text input e Text input .

/ \
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|
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Latent concept ! Latent concept
variable ! variable

|
e.g. sentiment analysis, topic classification, : e.g. linguistic analysis, hate speech detection
|
:
|
|
|
|
|
|
|
|
\

/ \
Label ° Label °
(discrete) (discrete)
emotion classification tasks

[)d (/\ “/r! \(I ) ¢.I‘ ‘\z;‘l, )r) P‘.‘\l](}"‘a)(il«yrl(l~ .“’)( }f{[ X)

B / Py (X160, Y)Py (0Yy, X{, ... Vi, X{,Y)dO 1 = /9 Py (Y16, X)Py; (01X, YY, ..., X§, Vi, X)d@
©

-~ \ TN '

Bayes optimal classifier . Bayes optimal classifier P

~ o -
—————————————————————————————

« Assumption: the data for each task is generated by a specific value
of 6. i.e. a different value of 6 indicates a different task.
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Causal v.s. anti-causal

W Causal ™ Anti-causal

76.3
20 73.6
60.8
534 g9g 0753 >/ 54.1 55.6
38.8 374
> 26.6

SST2 COLA| |[Dbpedia| |[EmoC EmoS| [ETHOS-SO ETHOS-R
sentiment analysis linguistic analysis Emotion classification Hate speech detection

Topic classification

* 4-shot in-context learning accuracy with GPT2-large.
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Analysis in-context learning classifier

PV X ¥, o XV X)

:/ P (Y0, X) P (0|1 XE, YE, .., XE V¢, X)dO
J O =

Latent concept variable learning
(soft prompt tuning)

Demonstration selection

- We want to make the above in-context learning classifier Py (VX Y, ..., X Y4 X)
as close to the Bayes optimal classifier as possible, which means we need to
make Py (01X, Y ... XY X) as concentrated on the 6 value
corresponding to task d as possible.

« We can use the above conclusion to first learn a delegate of the true latent
concept variable, and then use the delegate 1o choose the best

demonstrations from a set of annotated data.
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Algorithm overview

Latent Concept Learning Y Demonstration Selection 0 In-context Learning Test Y

' ' ..m ‘ ‘

LM I:{} LM I:{} LM

J \ J L J \ J | J
I 1 1 1

compute
Y compute (X,Y1), (X,,Y5), oy (XY,)  TestX

> ,
UWN Cross entropy loss Dataset Select (X,Y) pairsL Language model probability infer
embeddings log Py, (Y]6,X) ~— Py (81X,Y)

> -
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Latent Concept Learning

- Add a few new concept
tokens to the original
vocabulary of the LLM.

* Train the embedding of
these concept fokens
while freezing all other
parameters, such that the
LLM can predict the label

LLM

9 X compute Y given X and the
\ COﬂcepT tokens as
Update Cross entropy loss atase .
embeddings log Py (Y]6,X) prefixes. |
- Use GPT2-large In
practice.
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Demonstration Selection

——
LLM
| J \ )

1 I

X Y compute
> '
Select (X,Y) pa‘;\ Language model

probability

« Compute the LM
probability of predicting
the concept tokens
given an example (X, Y).

* Then choose the top-k
examples producing
the highest probabilities
as the demonstrations
for in-context learning.

» Use GPT2-large in
practice.
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In-context Learning

» Test the performance of
the chosen k
demonstrations by using
Test Y them for in-context
learning on a separate
test set.

 Different LLMs from the
e infer previous stages can be

! Y
(XpY1), (X)Y2), s (XY, ) Test X Used .

» Use different sizes GPTs
INn practice.

LLM
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Main results

M Uniform M Similar = Ours

69.2
66.6
64.8 65.1 64.2
62.6
56.8 56.2 574 56.7 56.8 >1.7
53. 7 I I
GPT2 GPT2-medium  GPT2-large GPT2-xl GPT3-ada  GPT3-babbage GPT3-curie  GPT3-davinci
(124M) (355M) (774M) (1.58) (350M) (1.3B) (6.7B) (175B)

o Results are averaged over 8 text classification datasets, each experiment is repeated by 5

runs.
o« We select the optimal demonstrations by GPT2-large, and use the same set of

demonstrations for all other LLMs.
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A TSNE plot of the learned concept tokens
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Takeaways

« Real-world LLMs implicitly infer a latent concept variable

during in-context learning time.
When have a set of annotated data, we can first learn o
delegate of the concept variable and then select the

a

emonstrations that can best represent/infer the concept

variable.

G

The selected demonstrations can be transferred across

Ifferent-size LLMs pre-trained on similar text distributions.

This indicates such behavior of LLMs comes from the pre-

training data distribution.
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Guiding Language Model Reasoning with Planning
Tokens

Xinyi Wang, Lucas Caccia, Oleksiy Ostapenko, Xingdi Yuan, Alessandro
Sordoni ( )


https://arxiv.org/abs/2310.05707

Chain-of-thoughts reasoning

« Question: Every day, Wendi feeds each of her chickens three
cups of mixed chicken feed, containing seeds, mealworms
and vegetables to help keep them healthy. She gives the
chickens their feed in three separate meals. In the morning,
she gives her flock of chickens 15 cups of feed. In the
afternoon, she gives her chickens another 25 cups of
feed. How many cups of feed does she need to give her
chickens in the final meal of the day if the size of Wendi's
flock is 20 chickens?

* |f each chicken eats 3 cups of feed per day, then for 20
chickens they would need 3*20=<<3*20=60>>60 cups of feed
per day.

* |f she feeds the flock 15 cups of feed in the morning, and 25
cups in the afternoon, then the final meal would require 60-

15-25=<<60-15-25=20>>20 cups of chicken feed.
 The answer is: 20
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Planning errors made by LLMs

Question: Every day, Wendi feeds each of her chickens three cups of mixed chicken feed, containing seeds,
mealworms and vegetables to help keep them healthy. She gives the chickens their feed in three separate
meals. In the morning, she gives her flock of chickens 15 cups of feed. In the afternoon, she gives her
chickens another 25 cups of feed. How many cups of feed does she need to give her chickens in the final
meal of the day if the size of Wendi's flock is 20 chickens?

I
| Vanilla supervised fine tuning Fine tuning with arithmetic planning tokens
|

<prefix> <+> Wendi gives her flock 15 cups of feed in the
morning and another 25 cups in the afternoon, for a total of
15+25 = <<15+25=40>>40 cups of feed.

| Every day, Wendi gives her chickens 15

| cups of feed in the morning + 25 cups of

| feed in the afternoon = <<15+25=40>>40
| cups of feed.

|

: If she has 20 chickens and she feeds them
| 40 cups of feed every day, then each

| chicken gets 40/20 = <<40/20=2>>2 cups
" of feed per chicken.

= <<20*3=60>>60 cups of feed to feed her flock.

<prefix> <-> If Wendi has already given her flock 40 cups of
feed, then she needs to give her flock 60-40 = <<60-
40=20>>20 more cups of feed.

The answeris: 2 from the correct

|
I
|
|
|
I
|
|
<prefix> <*> If Wendi has 20 chickens, then she needs 20*3 :
|
|
|
I
|
|
|
reasoning flow |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
: * Drifting away :
| |
|



A Bayesian view of chain-of-thoughts

Latent variable distribution only
drastically changes at the
beginning of each CoT step

PM(th:T\wl:t):/ Pf\f(wt+1:’]\[(9’w1:t)d9
o

N

Simplified assumption: there is a discrete planning variable governing
each chain-of-thoughts step.

UC SANTA BARBARA



Planning tokens

Question

General Specialized planning tokens

planning [-pre b [<+>|Wendi gives her flock 15 cups of feed in the
tokens  morning and another 25 cups in the afternoon, for a total of
15+25 = <<15+25=40>>40 cups of feed.

<*> |f Wendi has 20 chickens, then she needs 20*3 =

<<20*3=60>>60 cups of feed to feed her flock. dea:

better -

<-> If Wendi has already given her flock 40 cups of control. of
feed, then she needs to give her flock 60-40 = <<60-40=20>>20 reéasoning

more cups of feed. flow

<answer> The answer is: 20
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Training with planning tokens

Step classifier

P,(T;|S;, S T, € Q
(Iightweight) [ go( l| i contex) } i

Assign a planning token to each reasoning step in
the training set

Plan Generate

N
LLM | [Pemie sy - Ts s aPe(sil0. T Se - Tes Sia T
(very large) i=1

Only tune the embeddings of the planning tokens and
some helping adapters (e.g. LORA)

* Note: to increase the representation capacity, the planning token can be a sequence
of tokens.
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Step classifiers

* Reasoning steps embedded with T5 encoder

Arithmetic Clustering Latent
Planning :
token 1 Planning token 2 [ Step embedding ]
\ xxxl)i [ MLP ]
X :x);){((xx ixxxxxi Xxx .
XX XX XX XX Contrastive Gaussian softmax
v

XXX
x;(xxx xﬁ(;())((%(;( I
WXt 0SS :
XX XX % \J@—» Planning token

f\ [ MLP ]
Planning token 3 [ Reconstructed embedding ]

MSE Reconstruction loss
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Planning tokens implementation

Output: Probabilities over tokens

) Planning
Softmax token ou.tput
¥ howT embeddings
Output  embedding W,  [//42
—————————————— -hp--m -

( Add & Layer norm )4—
*

( Pointwise feed forward )

Transformer Block
Repeat x L

h, = transformer_block(h,_1)

1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1

( Add & Layer norm )47
A =105k
( Masked multi-headed self-attention )
B CXWeT Wy T d
Embedding matrix W, Planning
f. token input Pretrained LLM: Llama 2 (7B)
Input: x embeddings
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Combination with parameter efficient tuning

Output: Probabilities over tokens

Planning
! k
Softmax token ou.tput
LORA adapters ¥ howW7 embeddings
on MLP modules Output _embedding W
e e e R e e e e s -

h l ( Add & Layer norm )4—
a T ;

Transformer Block
Pointwise feed forward )

1
I
I
I
I

Pretrained : Repeat x L
Weights A |

W e Réxd ( Add & Layer norm )47 | h, = transformer_block(hy_1)

- 4 ! be=1.:..:L
( Masked multi-headed self-attention ) :
I

-------------- XWo W= ====="
Embedding matrix W, P4} Planning
f token input Pretrained LLM: Llama 2 (7B)
Input:x embeddings
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Main results

Base model Planning Type #clusters #trainable GSM8K MATH AQUA Avg

Phi 1.5 N/A 0 100% 12.5 1.3 27.2 13.5
(1.3B) General 1 100% 15.4 2.0 354 17.6
Arithmetic + 100% 15.0 2.3 33.1 16.8

K-Means 5 100% 14.5 2.7 36.5 17.7

SQ-VAE 5 100% 15.8 3.3 34.3 17.8

Llama2 N/A 0 0.343% 38.2 6.5 36.6  27.1
(7B) General | 0.344% 38.5 6.7 37.8 277

Arithmetic ! 0.344% 39.5 5.6 38.2 278

K-Means S 0.344% 39.1 6.7 40.5 28.8

SQ-VAE S 0.344% 40.0 7.0 41.3 294

Llama2 N/A 0 0.279% 44.6 7.2 41.3  31.0
(13B) General 1 0.280% 47.9 7.9 42.5 32.8
Arithmetic + 0.280% 41.9 4.6 358 274

K-Means 5 0.280% 49.6 8.4 44.1 34.0

SQ-VAE 5 0.280% 50.6 8.5 439 343

Table 1: Testing accuracy of fine-tuned language models on different math word datasets.
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Reasoning length effect

GSM8K Aqua
= (.30 :
0.6 - Planing type Planing type —06
' = N/A = 0.25 mm N/A .
0.5- mem Arithmetic 2 mmn Arithmetic =~ 2
g mmm SQ-VAE 05 3 0.3 - W SQVAE  -04°
g 04- 8 o 8
3 = 0.15 %‘ 3 0.3 E
E‘ 0.3 = i E 0.2 - =
0.2 - 010§ - 0.2 E
|I‘ [
0.0 - II u - 0.00
3 4 5 6 7 8 9 10 11 12 9-20
Number of reasoning steps (ground truth) Number of reasonlng steps (ground truth)

Figure 2: Accuracy on GSMB8K (left) and Aqua (right) on test examples by their number of ground-
truth reasoning steps. SQ-VAE consistently increases performance for test examples that require
more steps of reasoning to be solved.
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Error types predicted by GPT4

Error type  Misunderstanding of question Computation Inaccurate extraction Wrong application of Wrong
errors of question math knowledge logic
information
Example Question: ...How many cups of ...7 + 3301x = Question: ...He spends  ..The number of feet ...52ab =
feed does she need to give her 3371x... the next half-hour the plane is fromthe 12 =273
chickens in the final meal of driving at a speed of ground is the target \cdot
the day... 30mph... of a geometric bA2S...
...then each chicken gets 40/20 ...He drove 2 hours at sequence...
= <<40/20=2>>2 cups of feed 30mph so he traveled
per chicken. The answer is: 2 2*30=<<2*30=60>>60
miles...
N/A 17 48 55 4 48
SQ-VAE 21 44 42 4 50
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Takeaways

* Planning tokens improve LLM's math reasoning
performance by (a) increasing the reasoning sequence
capacity, (b) making LLM a mix-of-expert model for
different reasoning types.

* Planning tokens improve the intra-step consistency.

» Concurrent work shows that similar method (our general
baseline) also works on QA tasks at pre-training time (Goyal
et al. 2023).
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https://arxiv.org/abs/2310.02226
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Thank you!

Questions?
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