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Outline

• Background: the many ways of understanding large 
language models (LLMs)
• Interpretability v.s. theory

• Existing LLM theories

• My progress 
• A latent variable theory

• A data composition theory

• Future research
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Background
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The many ways of understanding large language 
models (LLMs)

Interpretability Theory

(Source: OpenAI 2023) (Source: Ours 2024)

https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://arxiv.org/abs/2402.03268
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Interpretability v.s. Theory

Interpretability Theory

Theory

(Source: Lipton 2016)

Goal Make the LM prediction more transparent to humans, thus 
assist the final decision making progress or improve user 
experience.*

Propose a self-consistent theory to explain the LM 
behavior/learning process as it is, which can be applied to 
improve the LM performance. 

Difference Not necessarily corresponding to the underlying 
mechanism of LM learning/inference.

Must revealing the underlying mechanism of LM 
learning/inference.

Common Make the LM behavior more predictable. Reduce the risk of unwanted behavior of LMs.

⊃

LLM
LLM

* Mechanistic interpretability focus on revert LM to human understandable programs. (detailed in next slides.)

https://arxiv.org/abs/1606.03490
https://dynalist.io/d/n2ZWtnoYHrU1s4vnFSAQ519J
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Zoom in or zoom out?

Zoom out: verify a hypothesis via 
theoretical analysis/experiments.

Feature: neuron.

Circuit: subgraph of 
connected neurons.

Universality: Analogous 
features and circuits form 
across models and tasks. 

Theory: universal 
principle governing 
all models.

easy

easy

h
ard

h
ard

Parameter: pinpoint model 
parameters corresponding 
to a mechanism.

Mechanism: how 
theoretical principles are 
implemented as algorithm. 

Zoom in: the circuit view from 
mechanistic interpretability.

(Source: Olah et al. 2020)

https://distill.pub/2020/circuits/zoom-in/
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Example In-Context Learning Theories

Zoom in: Induction head 
(Source: Olssen et al. 2022)

Zoom out: Gradient descent 
(Source: Akyurek et al. 2022) 

Universality: Induction heads might constitute the 
mechanism for the actual majority of all in-context 
learning (ICL) in large transformer models.

easy
h

ard

Circuit: Induction heads “complete the pattern” by copying 
and completing sequences that have occurred before.

Feature: An attention head copies information from the 
previous token into each token, which enables the induction 
head to attend to tokens based on what happened before 
them, rather than their own content.

In-context learning score: the loss of the 500th token in the 
context minus the loss of the 50th token in the context.

Theory: In-context learning (ICL) is implemented by 
gradient descent on given demonstrations in Transformers.

easy
h

ard

Parameter: There is a Transformer construction to 
exactly implement least square algorithm. It is unknown 
how it is actually implemented in a Transformer.

Mechanism: An ordinary 
gradient-based least squares 
algorithm is implemented for 
the linear regression task. 

In-context learning task: linear regression

Artificial!

https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://arxiv.org/abs/2211.15661


Office/Department/Division Name

The Common Issue

The big gap between real world LLMs and the proposed 
explanations.

Verification

Useful practical implications 

Explanation verified 
with toy settings

Real world LLMs
?

Controllable, well-defined People really want

✓
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My progress
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Our Proposed LLM Theories

A latent variable theory
Analogical reasoning:

In-context learning

Multi-step reasoning:
Chain-of-thoughts

A data composition theory

There is a latent variable governing 
the reasoning process

Retrieval v.s. generalization? Both!

Zoom Out
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Large Language Models are Latent Variable Models:
Explaining and Finding Good Demonstrations for In-
Context Learning

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, William Yang 
Wang (NeurIPS 2023)

http://arxiv.org/abs/2301.11916
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Our Proposed LLM Theories

A latent variable theory
Analogical reasoning:

In-context learning

Multi-step reasoning:
Chain-of-thoughts

A data composition theory

There is a latent variable governing 
the reasoning process.

Retrieval v.s. generalization? Both!
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LLMs are latent variabel models

LLM: Latent variabel model:

Our assumption:

Generated continuation Prompt 1. Implicitly infer a latent 
concept variable θ from the 
prompt

2. Generate the continuation 
exclusively based on the 
inferred concept variable θ

Language model probability output by an LLM
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Analysis in-context learning classifier

Bayes optimal classifier

Infer θ from demonstrations

in-context learning classifier

Goal

Exists an optimal value 
of θ for current task

prompt tuning

Approximation
demonstration selection criteria
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Algorithm overview

prompt tuning to obtain 
the latent θ 

Scoring examples by Use the top examples for in-
context learning with any LMs



Office/Department/Division Name

Text classification results

● Results are averaged over 8 text classification datasets, each experiment is repeated by 5 

runs.

● We select the optimal demonstrations by GPT2-large, and use the same set of 

demonstrations for all other LLMs.
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GSM8K results

● We select the optimal demonstrations by Llama 2 (7B)/ GPT2-XL, and use the same set of 

demonstrations for all other LLMs.
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Guiding Language Model Math Reasoning with 
Planning Tokens
Xinyi Wang, Lucas Caccia, Oleksiy Ostapenko, Xingdi Yuan, Alessandro 
Sordoni (Arxiv)

https://arxiv.org/abs/2310.05707
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Our Proposed LLM Theories

A latent variable theory
Analogical reasoning:

In-context learning

Multi-step reasoning:
Chain-of-thoughts

A data composition theory

There is a latent variable governing 
the reasoning process.

Retrieval v.s. generalization? Both!
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LLM fine-tuned with chain-of-thoughts data

Question: Every day, Wendi feeds each of her chickens three cups of mixed chicken feed, containing seeds, 
mealworms and vegetables to help keep them healthy.  She gives the chickens their feed in three separate 
meals. In the morning, she gives her flock of chickens 15 cups of feed.  In the afternoon, she gives her 
chickens another 25 cups of feed.  How many cups of feed does she need to give her chickens in the final 
meal of the day if the size of Wendi's flock is 20 chickens?

Every day, Wendi gives her chickens 15 cups of feed in the morning + 25 cups of feed in the afternoon = 
<<15+25=40>>40 cups of feed.
If she has 20 chickens and she feeds them 40 cups of feed every day, then each chicken gets 40/20 = 
<<40/20=2>>2 cups of feed per chicken.
The answer is: 2
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A Bayesian view of chain-of-thoughts (CoTs)

Bayesian assumption: there is a latent variable 𝜽 governing the generation 
of the whole CoT sequence.

𝑟2𝑟1𝑥 𝑦
Question Step 1 Step 2 Answer

𝜽𝒘𝟏:𝒕 𝒘𝒕+𝟏:𝑻
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A Bayesian view of chain-of-thoughts (CoTs)

Simplified Bayesian assumption: there is a discrete planning variable 𝒕 
governing the generation of each chain-of-thoughts step.

𝑟2

𝑡2

𝑟1𝑥

𝑡1 𝑡𝑦

𝑦

Small changes in 

Question Step 1 Step 2 Answer

Large changes in 

𝜽 ≈
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LLM fine-tuning with planning tokens

<prefix> <+> Wendi gives her flock 15 cups of feed in the morning and another 25 cups in the 
afternoon, for a total of 15+25 = <<15+25=40>>40 cups of feed. 

<prefix> <*> If Wendi has 20 chickens, then she needs 20*3 = <<20*3=60>>60 cups of feed to feed 
her flock. 

<prefix> <-> If Wendi has already given her flock 40 cups of feed, then she needs to give her flock 
60-40 = <<60-40=20>>20 more cups of feed. 

<prefix> <answer> The answer is: 20

General 
planning 
tokens

Specialized planning tokens

Question: Every day, Wendi feeds each of her chickens three cups of mixed chicken feed, containing seeds, 
mealworms and vegetables to help keep them healthy.  She gives the chickens their feed in three separate 
meals. In the morning, she gives her flock of chickens 15 cups of feed.  In the afternoon, she gives her 
chickens another 25 cups of feed.  How many cups of feed does she need to give her chickens in the final 
meal of the day if the size of Wendi's flock is 20 chickens?
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Algorithm overview

Planning token 1 Planning token 2

Planning token 3

Step embedding

MLP

β

Gaussian Softmax

MLP

Reconstructed embedding

MSE Reconstruction loss

Planning token

Arithmetic VAEClustering
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Results on Math Word Datasets
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Reasoning length effect
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Understanding the Reasoning Ability of Language Models 
From the Perspective of Reasoning Paths Aggregation

Xinyi Wang, Alfonso Amayuelas, Kexun Zhang, Liangmin Pan, Wenhu 
Chen, William Yang Wang (Arxiv)

https://arxiv.org/abs/2402.03268
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Our Proposed LLM Theories

A latent variable theory
Analogical reasoning:

In-context learning

Multi-step reasoning:
Chain-of-thoughts

A data composition theory

There is a latent variable governing 
the reasoning process.

Retrieval v.s. generalization? Both!
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Reasoning with LLMs

• Definition of reasoning: deriving new conclusions with novel conditions from the known facts.

• Observation: Pre-trained-only base LLMs exhibit impressive reasoning capability without any 

fine-tuning.

(Source: Wei et al. 2022;  Kojima et al. 2022)

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2205.11916
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Understand reasoning ability of LLMs

• Hypothesis: LLMs can retrieve and 

aggregate (random walk) reasoning 

paths seen at pre-training time to do 

complex reasonings at inference time.

• Approach: We study two specific 

cases of reasoning:

• logical/knowledge graph (KG) 

reasoning: pre-train a toy 

transformer on KGs 

• mathematical reasoning: 

continue (pre-)train a pre-trained 

LM on more unlabeled 

augmented reasoning paths.
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Logical reasoning with knowledge graph

𝑒1
𝑒2𝑟1

𝑒3 𝑒5

𝑒4

𝑒6

𝑟2

𝑟4

𝑟3

𝑟1
?

?

path1 = (𝑒1, 𝑟1, 𝑒2), (𝑒2, 𝑟2, 𝑒3), (𝑒3, 
𝑟4, 𝑒4) 

path2 = (𝑒1, 𝑟1, 𝑒2), (𝑒2, 𝑟4, 𝑒5), (𝑒5, 
𝑟1, 𝑒6), (𝑒6, 𝑟3, 𝑒4) 

𝑟4

𝑟3

• Knowledge graph (seen triples): (e1, r1, e2), (e2, r2, e3), 

(e2, r4, e5), (e3, r3, e5), (e3, r4, e4), (e5, r1, e6), (e6, r3, e4)

• Unseen triples: (e1, r3, e4), (e3, r4, e6)

• Task: how to infer unseen triples from the seen ones?

• We propose to look at P(tail|head, relation). 

• i.e. P(e4|e1, r3), P(e6 |e3, r4). 

• The sample space is all entities in the graph.

• Language model training:

• Translate each entity and relation into a new token.

• Sample random walk paths from the knowledge 

graph to form the pre-training data.

• Use the next-token-prediction objective to pre-train 

a small transformer based LM from scratch. 

• Language model inference:

• prediction of the tail entity: prompt the LM with 

head entity and relation.
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Distributions

• Weighted aggregation:

• Unweighted aggregation:

• Language model:

logits

All Entities 

Path ranking algorithm (PRA) (Lao et. al. 2011)

Rules related to relation r
Sum of Random walk 
paths probability

Sum of Random walk 
paths probability

Rule weight 
learned by 
logistic regression

All possible rules

Uniform for random walk
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Comparing LM with path aggregation 

KL Divergence Prediction Accuracy

Decrease

Decrease

More peaky

More uniformStableunstable

Long path not useful

Long path useful

easy

hard

LM learn better path weight

Ground truth path length

Path length with the largest 
number of correct paths
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Ablation on random walk path length

• Test accuracy (%) of GPT2 pre-trained on different length random walk paths.

• All entities and relationships are translated as new tokens. i.e. no natural language involved.

* Exists an optimal path length
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Math reasoning with Chain-of-thoughts (CoT)

• Reasoning graph: CoTs can be regarded as 

walking on a graph whose nodes represent the 

current reasoning state.

• Encode reasoning state: cumulatively embed 

each CoT step with a pre-trained LM.

• Construct nodes: cluster the CoT steps. Each 

cluster represents a node in the reasoning 

graph.

• Random walk on this graph:
• Step 1. Randomly select a starting step

• Step 2. Follow the original CoT for m steps

• Step 3. In the cluster of the end step, randomly 

select another step as the next step.

• Step 4. Go back to step 2.

• This can be regarded as a light-weight data 

augmentation method for CoT reasoning.

S1

S3

S2

S2

S3

S5

S6

S7

S3

S4

Cluster 1

Cluster 2

Cluster 3
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Ablation on random walk path length

• GSM8K, AQUA, SVAMP are three math word datasets. We LORA fine-tune a Llama 2 (7B) model on CoT data.

• We first do 500 steps of random walk training then 2000 steps of regular supervised fine-tuning.

* Exists an optimal path length
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More results & ablations

• Ablation on model size, number of clusters, and number of training steps.

• #Nodes = 0 and #Steps = 0 means we don’t do any random walk training.
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Future Research
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Research plan

• Future research directions:
• Zoom in more: how model parameters correspond to proposed theory.

• Exploring better ways to verify the proposed theory with real world LLMs.

• Connections between foundation models of different modalities. E.g. 
language model and diffusion



Office/Department/Division Name

Thank you!
Questions?
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