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Ouvutline

* Background: the many ways of understanding large
language models (LLMs)
* Interpretability v.s. theory
* Existing LLM theories

* My progress
» A latent variable theory
- A data composition theory

 Future research
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Background



The many ways of understanding large language
models (LLMs)

Interpretability

Step 1: Generate explanation using GPT-4

The Avengers to the big screen, Joss Whedon has
returned to reunite Marvel's gang of superheroes for their
toughest challenge yet. Avengers: Age of Ultron pits the tit
ular heroes against a sentient artificial intelligence, and
smart money says that it could soar at the box office to be
the highest-grossing film of the

, which means this Nightwing movie is probably not about
the guy who used to own that suit. So, unless new director
Matt Reeves' The Batman is going to dig into some of this
backstory or introduce the Dick Grayson character in his
movie, the Nightwing movie is going to have a lot of work
to do explaining

introduction into the Marvel cinematic universe, it's
possible, though Marvel Studios boss Kevin Feige told
Entertainment Weekly that, "Tony is earthbound and
facing earthbound villains. You will not find magic power
rings firing ice and flame beams." Spoilsport! But he does
hint that they have some use... STARK T

of Avengers who weren't in the movie and also Thor try to
fight the infinitely powerful Magic Space Fire Bird. It ends
up being completely pointless, an embarrassing loss, and |
'm pretty sure Thor accidentally destroys a planet. That's
right. In an effort to save Earth, one of the heroes inadvert
antly blows up an

Given a GPT-2 neuron, generate an explanation of its behavior by showing relevant text

sequences and activations to GPT-4.

[Model-generated explanation:

references to movies, characters, and entertainment.

] (Source: OpenAl 2023)

Theory

(Hypothetical) Reasoning graph G Pre-training corpus D

Pm() o exp[w] PD(t) +

A N A
viPo @@

(Source: Ours 2024)
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https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://arxiv.org/abs/2402.03268

Interpretability v.s. Theory

Interpretability
(Source: Lipton 2016)
y'Ty
Z1 Evaluation
T Metric ||:’\>~A‘
L 4 I &
Interpretation |:> w
Goal Make the LM prediction more transparent to humans, thus

assist the final decision making progress or improve user

experience.*

Difference Not necessarily corresponding to the underlying
mechanism of LM learning/inference.

Theory
YT
ID

Zq
)

Evaluation

Metric ||:‘[>~ A ‘

RS

Theory

Propose a self-consistent theory to explain the LM
behavior/learning process as it is, which can be applied to
improve the LM performance.

Must revealing the underlying mechanism of LM
learning/inference.

Common Make the LM behavior more predictable. Reduce the risk of unwanted behavior of LMs.

* Mechanistic interpretability focus on revert LM to human understandable programs. (detailed in next slides.)
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https://arxiv.org/abs/1606.03490
https://dynalist.io/d/n2ZWtnoYHrU1s4vnFSAQ519J

Zoom in or zoom out?

Universality: Analogous
features and circuits form
across models and tasks.

Circuit: subgraph of
connected neurons.

. heuron.

Zoom in: the circuit view from
mechanistic interpretability.

ALEXNET

Krizhevsky etal. [34

INCEPTIONV1

Szegedy etal. |28

RESNETV2-50

He etal. (3]

Curve detectors

A car detector (4c 447)
is assembled from
earlier units.

Windows (4b:237)
excite the car detector
at the top and inhibit
at the bottom.

Car Body (4b:491)
excites the car
detector, especially at
the bottom.

Wheels (4b:373) excite
the car detector at the
bottom and inhibit at
the top.

(Source: Olah et al. 2020)

High-Low Frequency detectors

: universal
principle governing
all models.

Mechanism: how
theoretical principles are
implemented as algorithm.

Parameter: pinpoint model
parameters corresponding
to a mechanism.

Zoom out: verify a hypothesis via
theoretical analysis/experiments.
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https://distill.pub/2020/circuits/zoom-in/

Example In-Context Learning Theories

Zoom in: Induction head Zoom out: Gradient descent
(Source: Olssen et al. 2022) (Source: Akyurek et al. 2022) ®
Q
<
Universality: Induction heads might constitute the : In-context learning (ICL) is implemented by
mechanism for the actual majority of all in-context gradient descent on given demonstrations in Transformers.
learning (ICL) in large transformer models. to (Tquery)
O . query
0 folz) Find 4
Y st ‘To(®iiays D) R Vi
@ - : ) ﬁ y
. R . “ ” . & /K gi' — Transformer /
Circuit: Induction heads “complete the pattern” by copying L N\W, i e
and completing sequences that have occurred before. & Finds
attention st. (W — VwL(D"™")) fo(Ttest) = Yrest peomesss Yquery
Random Tokens m Mechanism: An ordinary == Gradient descent
Cat 40 id d Cat 40 id tructi . 0.2 4 Trained Transformer
ategory 40 ics node [ ategory 40 ics ol NN gradient-based least squares 2
D eament oken " B i noreased for che next ke, algorithm is implemented for o

the linear regression task. 00 ~ -
GD Steps / Transformer Layers

: An attention head copies information from the

previous token into each token, which enables the induction Paramgter: There is a Transformer co.nstructl.on to
8 head to attend to tokens based on what happened before exactly implement least square algorithm. It is unknown
2L ihem rather than their own content how it is actually implemented in a Transformer.

In-context learning score: the loss of the 500th token in the . _ _
context minus the loss of the 50th token in the context. In-context learning task: linear regression

oo o _/
T - Artificial! <« UC SANTA BARBARA



https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://arxiv.org/abs/2211.15661

The Common Issue

The big gap befween real world LLMs and the proposed
explanations.

Controllable, well-defined People really want
Explanation verified °
{ vI\C/)ith toy settings J Verification > { Real world LLMs J

: Useful practical implications :

UC SANTA BARBARA



My progress



Our Proposed LLM Theories

There is a latent variable governing
the reasoning process

— A latent variable theory } {

Analogical reasoning:
In-context learning

Zoom Out —

| Adata composition theory} Mé‘r:g;i?—;ﬁz()g?:tzgi

Retrieval v.s. generalization? Both!

UC SANTA BARBARA
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University of California, Irvine

Large Language Models are Latent Variable Models:
Explaining and Finding Good Demonstrations for In-
Context Learning

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, William Yang
WELI:4 )


http://arxiv.org/abs/2301.11916

Our Proposed LLM Theories

There is a latent variable governing
the reasoning process.

T

Analogical reasoning:

A latent variable theory

In-context learning

A data composition theory} Mgf:g;ii?_;ﬁgi‘;r;'tzgi

Retrieval v.s. generalization? Both!
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LLMs are latent variabel models

LLM: P(wq.7) = __lP(wi\’wi—h---/-wﬂ Latent variabel model: P(w.7) = / P(w,.7|0)P(0)d6
5 o

[ Language model probability output by an LLM

Our assumption: PM wH—l T |w1 ) = / P]\[ wt+1 T|9)PM(9|w1 t)de

Generated continuation Prompt 2. Generate the continuation 1. Implicitly infer a latent
exclusively based on the concept variable 6 from the
inferred concept variable 6 prompt

UC SANTA BARBARA



Analysis in-context learning classifier

in-context learning classifier . pd (Y|Xd yd xd yd X)
_ M 1051 >k b

:/ Py (Y19, X) P @IXT Yy, ... X, YR, X)do

Goal o .\
A4 /_/ Infer © from demonstrations

Bayes optimal classifier
Exists an optimal value
Approximation / of O for current task

demonstration selection criteria
prompt tuning

UC SANTA BARBARA



Algorithm overview

Latent Concept Learning Y Demonstration Selection 0 In-context Learning Test Y
LM I:{} LM I:{} LM
J ) L )\ ) | J\ )
' ! compute ! ! !
0 X X Y compute (X3,Y1), (X5,Y5), s (XY,)  TestX
- L J

UpdN Cross entropy loss Select (X,Y) pairsL Language model probability infer
embeddings log Py (Y]8,X) ~— Py (81X,Y)

prompt tuning to obtain Scoring examples by Use the top examples for in-

the latent © P X8 Vo2 ... X2 V2 X) context learning with any LMs
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Text classification results

B Uniform ®Similar = Ours

69.2
66.6
64.8 65.1 64 2
62.6 ' 62.463'7
56.8 56.2 574 56.7 56.8 >1.7
53. 7 I I

|
GPT2 GPT2-medium  GPT2-large GPT2-xl GPT3-ada  GPT3-babbage GPT3-curie  GPT3-davinci

(124M) (355M) (774M) (1.58) (350M) (1.3B) (6.7B) (175B)

o Results are averaged over 8 text classification datasets, each experiment is repeated by 5

runs.
o« We select the optimal demonstrations by GPT2-large, and use the same set of

demonstrations for all other LLMs.
UC SANTA BARBARA



GSMS8K resulis

Uniform  Similar  Ours w/ Llama 2 (7B)  Ours w/ GPT2-XL (1.5B)

Prompt tuning - - 15.2 7.3
Llama 2 (7B) 1.4 13.1 19.3 15.9
Llama 2 (13B) 17.0 18.3 21.6 20.5
Llama 2 (70B) 50.2 33.5 34.3 52.9
ChatGPT (gpt-3.5-turbo) 76.5 78.1 81.2 80.4

Table 1: Prompt tuning and 4-shot in-context learning accuracy on a subset of GSMS8K test set. Our
demonstrations are selected with either 7B Llama 2 or GPT2-XL

o We select the optimal demonstrations by Liama 2 (7B)/ GPT2-XL, and use the same set of
demonstrations for all other LLMs.

UC SANTA BARBARA
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Guiding Language Model Math Reasoning with
Planning Tokens

Xinyi Wang, Lucas Caccia, Oleksiy Ostapenko, Xingdi Yuan, Alessandro
Sordoni ( )


https://arxiv.org/abs/2310.05707

Our Proposed LLM Theories

There is a latent variable governing
the reasoning process.

T

f Analogical reasoning:
L In-context learning

A latent variable theory

A data composition theory} Multi-step reasoning:

Chain-of-thoughts

Retrieval v.s. generalization? Both!

UC SANTA BARBARA



LLM fine-tuned with chain-of-thoughts data

Question: Every day, Wendi feeds each of her chickens three cups of mixed chicken feed, containing seeds,
mealworms and vegetables to help keep them healthy. She gives the chickens their feed in three separate
meals. In the morning, she gives her flock of chickens 15 cups of feed. In the afternoon, she gives her
chickens another 25 cups of feed. How many cups of feed does she need to give her chickens in the final
meal of the day if the size of Wendi's flock is 20 chickens?

Every day, Wendi gives her chickens 15 cups of feed in the morning + 25 cups of feed in the afternoon =

<<15+25=40>>40 cups of feed.
If she has 20 chickens and she feeds them 40 cups of feed every day, then each chicken gets 40/20 =

<<40/20=2>>2 cups of feed per chicken.
The answer is: 2

UC SANTA BARBARA



A Bayesian view of chain-of-thoughts (CoTs)

PM(wt+1:T\’w1:t) — / PM(wt+1:T|9)P]\/I(9|w1:t)d9
O

Wit 0 Wir1.T
| > |
[ 1| \
X I 4 V
Question Step 1 Step 2 Answer

Bayesian assumption: there is a latent variable @ governing the generation
of the whole CoT sequence.
UC SANTA BARBARA



A Bayesian view of chain-of-thoughts (CoTs)

Pyr(wirq.p|wig) = / Prr(wiiq.7|0) Py (0|lwy.)dO

Small changes in P ( Q‘wl 4
Quest|on /cep 1 Step 2\ %

7"1 /
\» Large changes in PM(H'wl:t)/
0 ~ t! = -

Simplified Bayesian assumption: there is a discrete planning variable t
governing the generation of each chain-of-thoughts step.
UC SANTA BARBARA



LLM fine-tuning with planning tokens

Question: Every day, Wendi feeds each of her chickens three cups of mixed chicken feed, containing seeds,
mealworms and vegetables to help keep them healthy. She gives the chickens their feed in three separate
meals. In the morning, she gives her flock of chickens 15 cups of feed. In the afternoon, she gives her
chickens another 25 cups of feed. How many cups of feed does she need to give her chickens in the final
meal of the day if the size of Wendi's flock is 20 chickens?

General
planning [<prefix> Wendi gives her flock 15 cups of feed in the morning and another 25 cups in the
tokens  afternoon, for a total of 15+25 = <<15+25=40>>40 cups of feed.

If Wendi has 20 chickens, then she needs 20*3 = <<20*3=60>>60 cups of feed to feed

her flock.

If Wendi has already given her flock 40 cups of feed, then she needs to give her flock
60-40 = <<60-40=20>>20 more cups of feed.

The answer is: 20

UC SANTA BARBARA



Algorithm overview

Training
Data

Arithmetic

- X

Planning Token
Inference

o Latent(\)\ i

T

Inference
o J

Planning token 1

Clustering

X X X
Xxxxx )X x XX x
Xxx XXX y XX X
XX X X XXXX
X )X o X
XXX XX %
Xx)( Xxxxx
XXxXx)z(x
XX XX X
X X XX

Training

)

Language Model

7\

A 4

Planning token 2

VAE

Step embedding

[ MLP ]

A\ 4

Gaussian Softmax

@—> Planning token

[ MLP ]

Planning token 3

[ Reconstructed embedding ]

MSE Reconstruction loss

Generation

el ez | B2 3 B3] ey /
aRERR0m

Language Model g%t
. J
1
xl
J
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Results on Math Word Datasets

LM Method #clusters  #trainable GSMS8K MATH AQUA  Avg
Phi 1.5 Full-FT 0 100% 2.5 [.3 27.2 13.5
(1.3B) Full-FT + General I 100% 15.4 2.0 354 17.6

Full-FT + Arithmetic 4 100% 15.0 2.3 33.1 16.8

Full-FT + K-Means 3 100% 14.5 2.7 36.5 17.7

Full-FT + SQ-VAE 5 100% 15.8 3.3 34.3 17.8

Llama2 LoRA 0 0.343% 38.2 6.5 36.6 27.1
(7B) LoRA + General I 0.344% 38.5 6.7 37.8 27.7
LoRA + Arithmetic + 0.344% 39.5 3.6 38.2 27.8

LoRA + K-Means 5 0.344% 39.1 6.7 40.5 28.8

LoRA + SQ-VAE 5 0.344% 40.0 7.0 41.3 29.4

Llama2 LoRA 0 0.279% 44.6 7.2 41.3 31.0
(13B) LoRA + General I 0.280% 47.9 7.9 42.5 32.8
LoRA + Arithmetic 4 0.280% 41.9 4.6 35.}8 27.4

LoRA + K-Means 5 0.280% 49.6 8.4 44.1 34.0

LoRA + SQ-VAE 5 0.280% 50.6 8.5 43.9 34.3

UC SANTA BARBARA



Reasoning length effect

GSM8K Aqua
= (.30 :
0.6 - Planing type Planing type —06
' = N/A = 0.25 mm N/A .
0.5- mem Arithmetic 2 mmn Arithmetic =~ 2
g mmm SQ-VAE 05 3 0.3 - W SQVAE  -04°
g 04- 8 o 8
3 = 0.15 %‘ 3 0.3 E
E‘ 0.3 = i E 0.2 - =
0.2 - 010§ - 0.2 E
|I‘ [
0.0 - II u - 0.00
3 4 5 6 7 8 9 10 11 12 9-20
Number of reasoning steps (ground truth) Number of reasonlng steps (ground truth)

Figure 2: Accuracy on GSMB8K (left) and Aqua (right) on test examples by their number of ground-
truth reasoning steps. SQ-VAE consistently increases performance for test examples that require
more steps of reasoning to be solved.

UC SANTA BARBARA
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Understanding the Reasoning Ability of Language Models
From the Perspective of Reasoning Paths Aggregation

Xinyi Wang, Alfonso Amayuelas, Kexun Zhang, Liangmin Pan, Wenhu
Chen, William Yang Wang ( )


https://arxiv.org/abs/2402.03268

Our Proposed LLM Theories

There is a latent variable governing
the reasoning process.

T

A latent variable theory

] f Analogical reasoning:

L In-context learning

Multi-step reasoning:

A data composition theory Chain-of-thoughts

!

Retrieval v.s. generalization? Both!

UC SANTA BARBARA



Reasoning with LLMs

Chain-of-Thought Prompting

//( TET— } (d) Zero-shot-CoT (Ours)
/Q: A juggler can juggle 16 balls. Half of the balls are golf ballﬁ
Q: Roger has 5 tennis balls. He buys 2 more cans of and half of the golf balls are blue. How many blue golf balls are
tennis balls. Each can has 3 tennis balls. How many there?
tennis balls does he have now? A: Let’s think step by step.

(Output) There are 16 balls in total. Half of the balls are golf
balls. That means that there are 8 golf balls. Half of the golf balls
\are blue. That means that there are 4 blue golf balls. v /

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

do they have? (Source: Wei et al. 2022; Kojima et al. 2022)

. _J

Model Output )

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The
answeris 9. /

+ Definition of reasoning: deriving new conclusions with novel conditions from the known facts.

* Observation: Pre-trained-only base LLMs exhibit impressive reasoning capability without any
fine-tuning.

UC SANTA BARBARA


https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2205.11916

Understand reasoning ability of LLMs

« Hypothesis: LLMs can retrieve and
aggregate (random walk) reasoning (Hypothetical) Reasoning graph G Pre-training corpus D
paths seen at pre-training time to do m
complex reasonings at inference time. | o

- Approach: We study two specific
cases of reasoning:

* logical/knowledge graph (KG)
reqsoning: pre-train a toy
transformer on KGs

« mathematical reasoning:
continue (pre-)train a pre-trained
LM on more unlabeled
augmented reasoning paths.

UC SANTA BARBARA



Logical reasoning with knowledge graph

- Knowledge graph (seen triples): (e, r', €2), (€2, 12, e3), pathl = (e', %, e?), (e?, 7%, ), (e?,
(€2, r4, %), (€3, 13, €9), (e3, 14, e4), (e5, 1, ef), (€8, 13, e?)
- Unseen triples: (e!, 13, &), (€3, 14, €9)
« Task: how to infer unseen friples from the seen onese
« We propose to look at P(tail | head, relation).
- i.e.P(et]el, r3), P(ed | es, r).
- The sample space is all entities in the graph.
- Language model fraining:
« Translate each entity and relation into a new token.
- Sample random walk paths from the knowledge
graph to form the pre-training data.
« Use the next-token-prediction objective to pre-train
a smalll transformer based LM from scratch. path2 = (el, r1, e?), (e?, %, e°), (e>,
- Language model inference: rl e®), (e, r3, e?)
« prediction of the tail entity: prompt the LM with
head entity and relation.

UC SANTA BARBARA



Distributions

Sum of Random walk:

 Language model: + Weighted aggregation:
c o logits ) /Path ranking algorithm (PRA) (Lao et. al. 2011)
| ~ i | exp(Sy(ealer,r)/T) |
| oo (flElenn) : ' Pulesler,r) = 3)
i fhulealerm) = D _ccg exp (folelerr)) @ : 2eee OXP(Su(eler)/T) :
N AllEnttles /  Suleslen,r) = S ) Bleslen)
- Unweighted aggregation: i i \ i

e D LD - : Rule weight
‘A simplified version of P, would be letting w;(h) = 1 for N All possible rules learned by paths probability
'all h and r. And we define this unweighted aggregation IR logistic regression

 distribution to be P,: L T TTTTTTTTTTTTTTTTTTTTTTTT T I eI

— exp(2_ncgp Plealenh))/ T)
> ece PO, cqm Pleler, )/ T)

R

_ Sum of Random walk
| Rules related to relation r paths probability

U

(4)

(eg.-r‘l.el)...(en,l.rn.en)EPh i=1

/ P(enleg, h) = Z HP(e?,-e?,-_l, ri)

Uniform for random walk

UC SANTA BARBARA



omparing LM with path aggregation

Prediction Accuracy

KL Divergence

More peaky
( o] e Ground truth path length
15 34 I
€asy ] 0 } _____ e B . - e
3 16 © 801 =) & e [
l < o o ‘t Teea
5 16 9 60 1 £ | —-e- LM
Decrease Countries 3 16 ﬁ 01 /" I | | - Weighted
El - g } I R --&- Unweighted
2 € 20
2 14 § I
(7] O 01 1
- 13 T T T
<z 1 2 3 4
(0] 16 1
8 small
B <
5] L
AN P ,
o 6 2.6
] ] e
hard . > 65 | ) e po—— g - — -
< C 60 @ e
| i ) =
G = > g 55 - A --=-- Weighted
Decrease .g : 0 1 --&-- Unweighted
.% 0.4 (043 0.38 = 50+ I
= D ‘:‘.’
| 0.42 . 0.39 45 - I! 1 ‘ | : I ' .
04 (042 037 1 ) 3 4 5 6 7 8 9 10
: | Path Length
: small .
1 2 3 4 5 6 7 8 5 10 1 2 3 4 5 6 7 8 9 1 4 Path length with the largest
Weighted distribution B, Unweighted distribution P Ground truth P* Uniform P,
(S , ) N number of correct paths
unstable Stable More uniform
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Ablation on random walk path length

90 - .
| SEREEEEEE ¢ ----------- .
' e
80
S 701/
& G A G- R e - . .
g 60 w—"""_ > S il * Exists an optimal path length
: =
& rA ;- _______________ - J—— 7 S -
50 1 A e-- Countries
=- UMLS
40 3! —-a- Kinship
Y A T e NELL-995
30 & +- FB15K-237
1 5 7 10 15 20

Path Length

« Test accuracy (%) of GPT2 pre-trained on different length random walk paths.

 All entities and relationships are translated as new tokens. i.e. no natural language involved.
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Math reasoning with Chain-of-thoughts (CoT)

» Reasoning graph: CoTs can be regarded as

walking on a graph whose nodes represent the

current reasoning state.
- Encode reasoning state: cumulatively embed

each CoT step with a pre-trained LM. Cluster 1
« Construct nodes: cluster the CoT steps. Each

cluster represents a node in the reasoning

graph.
 Random walk on this graph:
- Step 1. Randomly select a starting step
«  Step 2. Follow the original CoT for m steps
- Step 3. In the cluster of the end step, randomly
select another step as the next step.

é@ﬂ Cluster 3
- This can be regarded as a light-weight data Cluster 2

Step 4. Go back to step 2.
augmentation method for CoT reasoning.

UC SANTA BARBARA



Ablation on random walk path length

&
35 e . ,,J*"’"‘_""‘--—-“t ____________ i
e Y
50 ~
- 45 -
o e GSM8K
5 40° -—-=- AQUA * Exists an optimal path length
0 &~ SVAMP
<
4+ -
P »---c T T |- n
304
U
O e ad B ®
251
1 5 7 10 15 20

Path Length

« GSM8K, AQUA, SVAMP are three math word datasets. We LORA fine-tune a Llama 2 (7B) model on CoT data.
« We first do 500 steps of random walk training then 2000 steps of regular supervised fine-tuning.

UC SANTA BARBARA



More results & ablations

#Nodes GSM8SK AQUA SVAMP Avg.

0 26.8 30.0 53.3 36.7
10 26.8 30.3 54.8 37.3
50 26.6 29.9 54.7 37.1
Model Method GSM8K AQUA SVAMP Avg. 100 28.5 34.6 55.8 39.6
7B SFT 26.8 30.0 533 36.7 200 26.6 31.1 52.5 36.7
Ours 28.5 34.6 55.8 39.6
13B SFT 37.1 35.0 66.4 46.2 Table 3. Ablation on the number of clusters/nodes K.

Ours 41.2 37.4 69.0 49.2

#Steps GSMSK AQUA SVAMP Avg.

Table 1. Testing accuracy of different size Llama 2 models con-

tinue pre-trained with our random walk paths and then supervised 0 26.8 30.0 533 36.7
fine-tuned. The supervised fine-tuning baseline (SFT) is fine-tuned 200 27.5 30.1 53.6 37.1
by the same number of total steps. Results are reported on three 500 28.5 34.6 55.8 39.6
math word problem (MWP) datasets. 1000 24.9 32.3 51.6 36.3

Table 2. Ablation on the number of random walk training steps M.

« Ablation on model size, number of clusters, and number of training steps.
« #Nodes = 0 and #Steps = 0 means we don’t do any random walk training.

UC SANTA BARBARA



Future Research



Research plan

 Future research directions:
- Zoom in more: how model parameters correspond to proposed theory.
« Exploring better ways to verity the proposed theory with real world LLMs.

« Connections between foundation models of different modalities. E.Q.
language model and diffusion

UC SANTA BARBARA



Thank you!

Questions?
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